ParamDev's picture
Upload folder using huggingface_hub
a01ef8c verified
raw
history blame
3.74 kB
API Reference
=============
Datasets
--------
.. currentmodule:: tlt.datasets
The simplest way to create datasets is with the dataset factory methods :meth:`load_dataset`, for using a
custom dataset, and :meth:`get_dataset`, for downloading and using a third-party dataset from a catalog such as TensorFlow
Datasets or Torchvision.
Factory Methods
***************
.. automodule:: tlt.datasets.dataset_factory
:members: load_dataset, get_dataset
Class Reference
***************
Image Classification
^^^^^^^^^^^^^^^^^^^^
.. currentmodule:: tlt.datasets.image_classification
.. autosummary::
:toctree: _autosummary
:nosignatures:
tfds_image_classification_dataset.TFDSImageClassificationDataset
torchvision_image_classification_dataset.TorchvisionImageClassificationDataset
tf_custom_image_classification_dataset.TFCustomImageClassificationDataset
pytorch_custom_image_classification_dataset.PyTorchCustomImageClassificationDataset
image_classification_dataset.ImageClassificationDataset
Text Classification
^^^^^^^^^^^^^^^^^^^
.. currentmodule:: tlt.datasets.text_classification
.. autosummary::
:toctree: _autosummary
:nosignatures:
tfds_text_classification_dataset.TFDSTextClassificationDataset
hf_text_classification_dataset.HFTextClassificationDataset
tf_custom_text_classification_dataset.TFCustomTextClassificationDataset
hf_custom_text_classification_dataset.HFCustomTextClassificationDataset
text_classification_dataset.TextClassificationDataset
Base Classes
^^^^^^^^^^^^
.. note:: Users should rarely need to interact directly with these.
.. currentmodule:: tlt.datasets
.. autosummary::
:toctree: _autosummary
:nosignatures:
pytorch_dataset.PyTorchDataset
tf_dataset.TFDataset
hf_dataset.HFDataset
dataset.BaseDataset
Models
------
.. currentmodule:: tlt.models
Discover and work with available models by using model factory methods. The :meth:`get_model` function will download
third-party models, while the :meth:`load_model` function will load a custom model, from either a path location or a
model object in memory. The model discovery and inspection methods are :meth:`get_supported_models` and
:meth:`print_supported_models`.
Factory Methods
***************
.. automodule:: tlt.models.model_factory
:members: get_model, load_model, get_supported_models, print_supported_models
Class Reference
***************
Image Classification
^^^^^^^^^^^^^^^^^^^^
.. currentmodule:: tlt.models.image_classification
.. autosummary::
:toctree: _autosummary
:nosignatures:
tfhub_image_classification_model.TFHubImageClassificationModel
tf_image_classification_model.TFImageClassificationModel
keras_image_classification_model.KerasImageClassificationModel
torchvision_image_classification_model.TorchvisionImageClassificationModel
pytorch_image_classification_model.PyTorchImageClassificationModel
pytorch_hub_image_classification_model.PyTorchHubImageClassificationModel
image_classification_model.ImageClassificationModel
Text Classification
^^^^^^^^^^^^^^^^^^^
.. currentmodule:: tlt.models.text_classification
.. autosummary::
:toctree: _autosummary
:nosignatures:
tf_text_classification_model.TFTextClassificationModel
pytorch_hf_text_classification_model.PyTorchHFTextClassificationModel
tf_hf_text_classification_model.TFHFTextClassificationModel
text_classification_model.TextClassificationModel
Base Classes
^^^^^^^^^^^^
.. note:: Users should rarely need to interact directly with these.
.. currentmodule:: tlt.models
.. autosummary::
:toctree: _autosummary
:nosignatures:
pytorch_model.PyTorchModel
tf_model.TFModel
hf_model.HFModel
model.BaseModel