ParamDev's picture
Upload folder using huggingface_hub
a01ef8c verified
raw
history blame
25.7 kB
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2022 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
#
import math
import os
import pytest
import shutil
import tempfile
from numpy.testing import assert_array_equal
from PIL import Image
from tlt.datasets.dataset_factory import get_dataset, load_dataset
try:
# Do TF specific imports in a try/except to prevent pytest test loading from failing when running in a PyTorch env
from tlt.datasets.image_classification.tfds_image_classification_dataset import TFDSImageClassificationDataset
except ModuleNotFoundError:
print("WARNING: Unable to import TFDSImageClassificationDataset. TensorFlow may not be installed")
try:
# Do TF specific imports in a try/except to prevent pytest test loading from failing when running in a PyTorch env
from tlt.datasets.text_classification.tfds_text_classification_dataset import TFDSTextClassificationDataset
except ModuleNotFoundError:
print("WARNING: Unable to import TFDSTextClassificationDataset. TensorFlow may not be installed")
try:
# Do TF specific imports in a try/except to prevent pytest test loading from failing when running in a PyTorch env
from tlt.datasets.image_classification.tf_custom_image_classification_dataset import TFCustomImageClassificationDataset # noqa: E501
except ModuleNotFoundError:
print("WARNING: Unable to import TFCustomImageClassificationDataset. TensorFlow may not be installed")
@pytest.mark.tensorflow
def test_tf_flowers_10pct():
"""
Checks that a 10% tf_flowers subset can be loaded
"""
flowers = get_dataset('/tmp/data', 'image_classification', 'tensorflow', 'tf_flowers',
'tf_datasets', split=["train[:10%]"])
assert type(flowers) == TFDSImageClassificationDataset
assert len(flowers.dataset) < 3670
@pytest.mark.tensorflow
@pytest.mark.parametrize('dataset_name,use_case,train_split,val_split,test_split,train_len,val_len,test_len',
[['beans', 'image_classification', 'train', 'validation', None, 1034, 133, 0],
['glue/cola', 'text_classification', 'train', 'validation', 'test', 8551, 1043, 1063]])
def test_defined_split(dataset_name, use_case, train_split, val_split, test_split, train_len, val_len, test_len):
"""
Checks that dataset can be loaded into train, validation, and test subsets based on TFDS splits and then
re-partitioned with shuffle-split
"""
splits = [train_split, val_split, test_split]
splits = [s for s in splits if s] # Filter out ones that are None
data = get_dataset('/tmp/data', use_case, 'tensorflow', dataset_name, 'tf_datasets', split=splits)
total_len = train_len + val_len + test_len
assert len(data.dataset) == total_len
if train_len:
assert len(data.train_subset) == train_len
else:
assert data.train_subset is None
if val_len:
assert len(data.validation_subset) == val_len
else:
assert data.validation_subset is None
if test_len:
assert len(data.test_subset) == test_len
else:
assert data.test_subset is None
assert data._validation_type == 'defined_split'
# Apply shuffle split and verify new subset sizes
train_percent = .6
val_percent = .2
test_percent = .2
data.shuffle_split(train_percent, val_percent, test_percent, seed=10)
assert len(data.train_subset) == int(total_len * train_percent)
assert len(data.validation_subset) == int(total_len * val_percent)
assert len(data.test_subset) == total_len - len(data.train_subset) - len(data.validation_subset)
assert data._validation_type == 'shuffle_split'
@pytest.mark.tensorflow
@pytest.mark.parametrize('dataset_name,use_case,train_split,train_len,val_len',
[['tf_flowers', 'image_classification', 'train[:30%]', 825, 275],
['glue/cola', 'text_classification', 'train[:10%]', 641, 213]])
def test_shuffle_split(dataset_name, use_case, train_split, train_len, val_len):
"""
Checks that dataset can be split into train, validation, and test subsets. The expected train subset length is
75% of the specified train_split. The expected validation length is 25% of the specified train split.
"""
flowers = get_dataset('/tmp/data', use_case, 'tensorflow', dataset_name, 'tf_datasets', split=[train_split])
flowers.shuffle_split(seed=10)
assert len(flowers.train_subset) == train_len
assert len(flowers.validation_subset) == val_len
assert flowers.test_subset is None
assert flowers._validation_type == 'shuffle_split'
@pytest.mark.integration
@pytest.mark.tensorflow
@pytest.mark.parametrize('dataset_name,use_case,image_size',
[['tf_flowers', 'image_classification', 224],
['glue/cola', 'text_classification', None]])
def test_shuffle_split_deterministic_tfds(dataset_name, use_case, image_size):
"""
Checks that tfds datasets can be split into train, validation, and test subsets in a way that is reproducible
"""
seed = 10
data1 = get_dataset('/tmp/data', use_case, 'tensorflow', dataset_name, 'tf_datasets', shuffle_files=False)
if image_size:
data1.preprocess(image_size, batch_size=1)
else:
data1.preprocess(batch_size=1)
data1.shuffle_split(seed=seed)
data2 = get_dataset('/tmp/data', use_case, 'tensorflow', dataset_name, 'tf_datasets', shuffle_files=False)
if image_size:
data2.preprocess(image_size, batch_size=1)
else:
data2.preprocess(batch_size=1)
data2.shuffle_split(seed=seed)
for i in range(10):
sample_1, label_1 = data1.get_batch()
sample_2, label_2 = data2.get_batch()
assert_array_equal(sample_1, sample_2)
assert_array_equal(label_1, label_2)
@pytest.mark.tensorflow
def test_shuffle_split_deterministic_custom():
"""
Checks that custom datasets can be split into train, validation, and test subsets in a way that is reproducible
"""
dataset_dir = '/tmp/data'
use_case = 'image_classification'
class_names = ['foo', 'bar']
seed = 10
image_size = 224
batch_size = 1
ic_dataset1 = None
ic_dataset2 = None
try:
ic_dataset1 = DatasetForTest(dataset_dir, use_case, None, None, class_names)
tlt_dataset1 = ic_dataset1.tlt_dataset
tlt_dataset1.preprocess(image_size, batch_size)
tlt_dataset1.shuffle_split(seed=seed)
ic_dataset2 = DatasetForTest(dataset_dir, use_case, None, None, class_names)
tlt_dataset2 = ic_dataset2.tlt_dataset
tlt_dataset2.preprocess(image_size, batch_size)
tlt_dataset2.shuffle_split(seed=seed)
for i in range(10):
image_1, label_1 = tlt_dataset1.get_batch()
image_2, label_2 = tlt_dataset2.get_batch()
assert_array_equal(image_1, image_2)
assert_array_equal(label_1, label_2)
finally:
if ic_dataset1:
ic_dataset1.cleanup()
if ic_dataset2:
ic_dataset2.cleanup()
@pytest.mark.tensorflow
@pytest.mark.parametrize('dataset_dir,use_case,dataset_name,dataset_catalog,class_names,batch_size',
[['/tmp/data', 'image_classification', 'tf_flowers', 'tf_datasets', None, 32],
['/tmp/data', 'image_classification', 'tf_flowers', 'tf_datasets', None, 1],
['/tmp/data', 'image_classification', None, None, ['foo', 'bar'], 8],
['/tmp/data', 'image_classification', None, None, ['foo', 'bar'], 1],
['/tmp/data', 'text_classification', 'glue/cola', 'tf_datasets', None, 1],
['/tmp/data', 'text_classification', 'glue/cola', 'tf_datasets', None, 32]])
def test_batching(dataset_dir, use_case, dataset_name, dataset_catalog, class_names, batch_size):
"""
Checks that dataset can be batched with valid positive integer values
"""
ic_dataset = DatasetForTest(dataset_dir, use_case, dataset_name, dataset_catalog, class_names)
try:
tlt_dataset = ic_dataset.tlt_dataset
if use_case == 'image_classification':
tlt_dataset.preprocess(224, batch_size) # image classification needs an image size
else:
tlt_dataset.preprocess(batch_size=batch_size)
assert len(tlt_dataset.get_batch()[0]) == batch_size
finally:
ic_dataset.cleanup()
@pytest.mark.tensorflow
@pytest.mark.parametrize('dataset_dir,use_case,dataset_name,dataset_catalog,class_names',
[['/tmp/data', 'image_classification', 'tf_flowers', 'tf_datasets', None],
['/tmp/data', 'image_classification', None, None, ['foo', 'bar']],
['/tmp/data', 'text_classification', 'glue/cola', 'tf_datasets', None]])
def test_batching_error(dataset_dir, use_case, dataset_name, dataset_catalog, class_names):
"""
Checks that preprocessing cannot be run twice
"""
ic_dataset = DatasetForTest(dataset_dir, use_case, dataset_name, dataset_catalog, class_names)
try:
tlt_dataset = ic_dataset.tlt_dataset
if use_case == 'image_classification':
tlt_dataset.preprocess(224, 1) # image classification needs an image size
else:
tlt_dataset.preprocess(batch_size=1)
with pytest.raises(Exception) as e:
if use_case == 'image_classification':
tlt_dataset.preprocess(256, 32)
else:
tlt_dataset.preprocess(batch_size=32)
assert 'Data has already been preprocessed: {}'.format(tlt_dataset._preprocessed) == str(e.value)
finally:
ic_dataset.cleanup()
@pytest.mark.integration
@pytest.mark.tensorflow
@pytest.mark.parametrize('dataset_name,use_case,expected_class_names',
[['glue/cola', 'text_classification', ['unacceptable', 'acceptable']],
['glue/sst2', 'text_classification', ['negative', 'positive']],
['imdb_reviews', 'text_classification', ['neg', 'pos']]])
def test_supported_tfds_datasets(dataset_name, use_case, expected_class_names):
"""
Verifies that we are able to load supported datasets and get class names
"""
dataset = get_dataset('/tmp/data', use_case, 'tensorflow', dataset_name, 'tf_datasets', split=["train[:10%]"])
assert dataset.class_names == expected_class_names
@pytest.mark.tensorflow
@pytest.mark.parametrize('dataset_name,use_case',
[['glue', 'text_classification'],
['sst2', 'text_classification'],
['taco', 'text_classification']])
def test_unsupported_tfds_datasets(dataset_name, use_case):
"""
Verifies that unsupported datasets get the proper error
"""
with pytest.raises(ValueError) as e:
get_dataset('/tmp/data', use_case, 'tensorflow', dataset_name, 'tf_datasets', split=["train[:10%]"])
assert "Dataset name is not supported" in str(e)
@pytest.mark.tensorflow
@pytest.mark.parametrize('dataset_name,delimiter',
[['foo', ':'],
[None, '\t'],
['potato', ',']])
def test_custom_text_classification_csv(dataset_name, delimiter):
"""
Tests load_dataset with a text classification csv file. Verifies that the csv file gets loaded into the dataset
and that the map function is properly applied to the data.
"""
dataset_dir = tempfile.mkdtemp()
csv_file_name = "test.csv"
default_dataset_name = "test"
use_case = "text_classification"
framework = "tensorflow"
class_names = ['neg', 'pos']
batch_size = 20
try:
# Write dummy csv file
csv_lines = ['pos{}hello\n'.format(delimiter), 'neg{}bye\n'.format(delimiter)] * batch_size
with open(os.path.join(dataset_dir, csv_file_name), 'w') as f:
f.writelines(csv_lines)
def map_func(x):
return int(x == 'pos')
dataset = load_dataset(dataset_dir, use_case, framework, dataset_name, csv_file_name=csv_file_name,
label_map_func=map_func, class_names=class_names, delimiter=delimiter,
shuffle_files=False)
assert len(dataset._dataset) == len(csv_lines)
assert dataset.class_names == class_names
if dataset_name:
assert dataset.dataset_name == dataset_name
else:
assert dataset.dataset_name == default_dataset_name
dataset.preprocess(batch_size=batch_size)
# Get a batch and verify that the text labels have been mapped to numerical values
_, label_value = dataset.get_batch()
assert_array_equal([1, 0] * int(batch_size / 2), label_value)
finally:
# Clean up after the test by deleting the temp dataset directory
if os.path.exists(dataset_dir):
shutil.rmtree(dataset_dir)
@pytest.mark.tensorflow
def test_custom_text_classification_extra_columns():
"""
Tests load_dataset with a text classification csv file that has 3 columns and uses select_cols and exclude_cols to
make the resulting dataset only have 2 columns.
"""
dataset_dir = tempfile.mkdtemp()
csv_file_name = "test.csv"
use_case = "text_classification"
framework = "tensorflow"
class_names = ['neg', 'pos']
batch_size = 20
delimiter = ","
try:
# Write dummy csv file with 3 columns
csv_lines = ['pos{0}hello{0}other\n'.format(delimiter), 'neg{0}bye{0}other\n'.format(delimiter)] * batch_size
with open(os.path.join(dataset_dir, csv_file_name), 'w') as f:
f.writelines(csv_lines)
def str_to_int(x):
return int(x == 'pos')
# Call load_dataset with exclude_cols
dataset = load_dataset(dataset_dir, use_case, framework, dataset_name=None, csv_file_name=csv_file_name,
class_names=class_names, delimiter=delimiter, exclude_cols=[2],
shuffle_files=False, label_map_func=str_to_int)
assert len(dataset._dataset) == len(csv_lines)
dataset.preprocess(batch_size=batch_size)
# The batch should have 2 columns, since one was excluded using 'exclude_cols'
assert len(dataset.get_batch()) == 2
# Call load_dataset with select_cols
dataset = load_dataset(dataset_dir, use_case, framework, dataset_name=None, csv_file_name=csv_file_name,
class_names=class_names, delimiter=delimiter, select_cols=[0, 1], shuffle_files=False,
label_map_func=str_to_int)
assert len(dataset._dataset) == len(csv_lines)
dataset.preprocess(batch_size=batch_size)
# We should only have 2 columns, since 'select_cols' was used
assert len(dataset.get_batch()) == 2
finally:
# Clean up after the test by deleting the temp dataset directory
if os.path.exists(dataset_dir):
shutil.rmtree(dataset_dir)
class DatasetForTest:
def __init__(self, dataset_dir, use_case, dataset_name=None, dataset_catalog=None, class_names=None, splits=None):
"""
This class wraps initialization for datasets (either from TFDS or custom).
For a custom dataset, provide a dataset dir and class names, with or without splits such as ['train',
'validation', 'test']. A temporary directory will be created with dummy folders for the specified split
subfolders and class names and 50 images in each folder. The dataset factory will be used to load the custom
dataset from the dataset directory.
For a dataset from a catalog, provide the dataset_dir, dataset_name, and dataset_catalog.
The dataset factory will be used to load the specified dataset.
"""
framework = 'tensorflow'
def make_n_files(file_dir, n):
os.makedirs(file_dir)
for i in range(n):
img = Image.new(mode='RGB', size=(24, 24))
img.save(os.path.join(file_dir, 'img_{}.jpg'.format(i)))
if dataset_name and dataset_catalog:
self._dataset_catalog = dataset_catalog
self._tlt_dataset = get_dataset(dataset_dir, use_case, framework, dataset_name, dataset_catalog)
elif class_names:
self._dataset_catalog = "custom"
dataset_dir = tempfile.mkdtemp(dir=dataset_dir)
if not isinstance(class_names, list):
raise TypeError("class_names needs to be a list")
if use_case == 'image_classification':
if isinstance(splits, list):
for folder in splits:
for dir_name in class_names:
make_n_files(os.path.join(dataset_dir, folder, dir_name), 50)
elif splits is None:
for dir_name in class_names:
make_n_files(os.path.join(dataset_dir, dir_name), 50)
else:
raise ValueError("Splits must be None or a list of strings, got {}".format(splits))
else:
raise NotImplementedError("The custom dataset option has only been implemented for images")
self._tlt_dataset = load_dataset(dataset_dir, use_case, framework, seed=10)
self._dataset_dir = dataset_dir
@property
def tlt_dataset(self):
"""
Returns the tlt dataset object
"""
return self._tlt_dataset
def cleanup(self):
"""
Clean up - remove temp files that were created for custom datasets
"""
if self._dataset_catalog == "custom":
print("Deleting temp directory:", self._dataset_dir)
shutil.rmtree(self._dataset_dir)
# TODO: Should we delete tfds directories too?
# Metadata about tfds datasets
tfds_metadata = {
'tf_flowers': {
'class_names': ['dandelion', 'daisy', 'tulips', 'sunflowers', 'roses'],
'size': 3670
},
'glue/cola': {
'class_names': ['unacceptable', 'acceptable'],
'size': 8551
}
}
# Dataset parameters used to define datasets that will be initialized and tested using DatasetForTest class.
# The parameters are: dataset_dir, use_case, dataset_name, dataset_catalog, class_names, and subfolders, which map to
# the constructor parameters for DatasetForTest, which initializes the datasets using the dataset factory.
dataset_params = [("/tmp/data", 'image_classification', "tf_flowers", "tf_datasets", None, None),
("/tmp/data", 'image_classification', None, None, ["a", "b", "c"], None),
("/tmp/data", 'text_classification', "glue/cola", "tf_datasets", None, None),
("/tmp/data", 'image_classification', None, None, ["a", "b", "c"], ['train', 'validation']),
("/tmp/data", 'image_classification', None, None, ["a", "b"], ['train', 'validation', 'test'])]
@pytest.fixture(scope="class", params=dataset_params)
def test_data(request):
params = request.param
ic_dataset = DatasetForTest(*params)
dataset_dir, use_case, dataset_name, dataset_catalog, dataset_classes, splits = params
def cleanup():
ic_dataset.cleanup()
request.addfinalizer(cleanup)
# Return the tlt dataset along with metadata that tests might need
return (ic_dataset.tlt_dataset, dataset_name, dataset_classes, use_case, splits)
@pytest.mark.tensorflow
class TestImageClassificationDataset:
"""
This class contains image classification dataset tests that only require the dataset to be initialized once. These
tests will be run once for each of the dataset defined in the dataset_params list.
"""
def test_class_names_and_size(self, test_data):
"""
Verify the class type, dataset class names, and dataset length after initialization
"""
tlt_dataset, dataset_name, dataset_classes, use_case, splits = test_data
if dataset_name is None:
assert type(tlt_dataset) == TFCustomImageClassificationDataset
assert len(tlt_dataset.class_names) == len(dataset_classes)
if splits is None:
assert len(tlt_dataset.dataset) == len(dataset_classes) * 50
else:
assert len(tlt_dataset.dataset) == len(dataset_classes) * len(splits) * 50
else:
if use_case == 'image_classification':
assert type(tlt_dataset) == TFDSImageClassificationDataset
elif use_case == 'text_classification':
assert type(tlt_dataset) == TFDSTextClassificationDataset
assert len(tlt_dataset.class_names) == len(tfds_metadata[dataset_name]['class_names'])
assert len(tlt_dataset.dataset) == tfds_metadata[dataset_name]['size']
@pytest.mark.parametrize('batch_size',
['foo',
-17,
20.5])
def test_invalid_batch_sizes(self, batch_size, test_data):
"""
Ensures that a ValueError is raised when an invalid batch size is passed
"""
tlt_dataset, dataset_name, dataset_classes, use_case, splits = test_data
with pytest.raises(ValueError):
if use_case == 'image_classification':
tlt_dataset.preprocess(224, batch_size)
else:
tlt_dataset.preprocess(batch_size=batch_size)
@pytest.mark.parametrize('image_size',
['foo',
-17,
20.5])
def test_invalid_image_size(self, image_size, test_data):
"""
Ensures that a ValueError is raised when an invalid image size is passed. This test only applies to
image dataset.
"""
tlt_dataset, dataset_name, dataset_classes, use_case, splits = test_data
if use_case == 'image_classification':
with pytest.raises(ValueError):
tlt_dataset.preprocess(image_size, batch_size=8)
def test_preprocessing(self, test_data):
"""
Checks that dataset can be preprocessed only once
"""
tlt_dataset, dataset_name, dataset_classes, use_case, splits = test_data
if use_case == 'image_classification':
tlt_dataset.preprocess(224, 8)
preprocessing_inputs = {'image_size': 224, 'batch_size': 8}
else:
tlt_dataset.preprocess(batch_size=8)
preprocessing_inputs = {'batch_size': 8}
assert tlt_dataset._preprocessed == preprocessing_inputs
# Trying to preprocess again should throw an exception
with pytest.raises(Exception) as e:
if use_case == 'image_classification':
tlt_dataset.preprocess(324, 32)
else:
tlt_dataset.preprocess(batch_size=32)
assert 'Data has already been preprocessed: {}'.format(preprocessing_inputs) == str(e.value)
print(tlt_dataset.info)
def test_shuffle_split_errors(self, test_data):
"""
Checks that splitting into train, validation, and test subsets will error if inputs are wrong
"""
tlt_dataset, dataset_name, dataset_classes, use_case, splits = test_data
with pytest.raises(Exception) as e:
tlt_dataset.shuffle_split(train_pct=.5, val_pct=.5, test_pct=.2)
assert 'Sum of percentage arguments must be less than or equal to 1.' == str(e.value)
with pytest.raises(Exception) as e:
tlt_dataset.shuffle_split(train_pct=1, val_pct=0)
assert 'Percentage arguments must be floats.' == str(e.value)
def test_shuffle_split(self, test_data):
"""
Checks that dataset can be split into train, validation, and test subsets
"""
tlt_dataset, dataset_name, dataset_classes, use_case, splits = test_data
# Before the shuffle split, validation type should be None or defined_split
if splits is None:
assert tlt_dataset._validation_type is None
else:
assert 'defined_split' == tlt_dataset._validation_type
# Perform shuffle split with default percentages
tlt_dataset.shuffle_split(shuffle_files=False)
default_train_pct = 0.75
default_val_pct = 0.25
# Get the full dataset size
len_splits = 1 if splits is None else len(splits)
dataset_size = tfds_metadata[dataset_name]['size'] if dataset_name else len(dataset_classes) * len_splits * 50
# Divide by the batch size that was used to preprocess earlier
dataset_size = dataset_size / tlt_dataset.info['preprocessing_info']['batch_size']
assert len(tlt_dataset.train_subset) == math.floor(dataset_size * default_train_pct)
assert len(tlt_dataset.validation_subset) == math.floor(dataset_size * default_val_pct)
assert tlt_dataset.test_subset is None
assert tlt_dataset._validation_type == 'shuffle_split'