Spaces:
Configuration error
Configuration error
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
# | |
# Copyright (c) 2023 Intel Corporation | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
import os | |
from pydoc import locate | |
from downloader.types import ModelType | |
class ModelDownloader(): | |
""" | |
A unified model downloader class. | |
Can download models from TF Hub, Torchvision, and Hugging Face. | |
""" | |
def __init__(self, model_name, hub, model_dir=None, **kwargs): | |
""" | |
Class constructor for a ModelDownloader. | |
Args: | |
model_name (str): Name of the model | |
hub (str, optional): The catalog to download the model from; options are 'tf_hub', | |
'torchvision', 'pytorch_hub', 'hugging_face', and 'keras' | |
model_dir (str): Local destination directory of the model, if None the model hub's default cache | |
directory will be used | |
kwargs (optional): Some model hubs accept additional keyword arguments when downloading | |
""" | |
if model_dir is not None and not os.path.isdir(model_dir): | |
os.makedirs(model_dir) | |
self._model_name = model_name | |
self._model_dir = model_dir | |
self._type = ModelType.from_str(hub) | |
self._args = kwargs | |
def download(self): | |
""" | |
Download the model | |
Returns: | |
A torch.nn.Module, keras.engine.functional.Functional, or tensorflow_hub.keras_layer.KerasLayer object | |
""" | |
if self._type == ModelType.TF_HUB: | |
from tensorflow_hub import KerasLayer | |
if self._model_dir is not None: | |
os.environ['TFHUB_CACHE_DIR'] = self._model_dir | |
return KerasLayer(self._model_name, **self._args) | |
elif self._type == ModelType.TORCHVISION: | |
if self._model_dir is not None: | |
os.environ['TORCH_HOME'] = self._model_dir | |
pretrained_model_class = locate('torchvision.models.{}'.format(self._model_name)) | |
return pretrained_model_class(**self._args) | |
elif self._type == ModelType.PYTORCH_HUB: | |
from tlt.utils.file_utils import read_json_file | |
from tlt import TLT_BASE_DIR | |
import torch | |
if self._model_dir is not None: | |
os.environ['TORCH_HOME'] = self._model_dir | |
config_file = os.path.join(TLT_BASE_DIR, "models/configs/pytorch_hub_image_classification_models.json") | |
pytorch_hub_model_map = read_json_file(config_file) | |
self._repo = pytorch_hub_model_map[self._model_name]["repo"] | |
# Some models have pretrained=True by default, which error out if passed in load() | |
if pytorch_hub_model_map[self._model_name]["pretrained_default"] == "True": | |
return torch.hub.load(self._repo, self._model_name) | |
else: | |
return torch.hub.load(self._repo, self._model_name, pretrained=True) | |
elif self._type == ModelType.HUGGING_FACE: | |
if self._model_dir is not None: | |
os.environ['TRANSFORMERS_CACHE'] = self._model_dir | |
# AutoModelForSequenceClassification is currently the only supported model type | |
from transformers import AutoModelForSequenceClassification | |
return AutoModelForSequenceClassification.from_pretrained(self._model_name, **self._args) | |
elif self._type == ModelType.KERAS_APPLICATIONS: | |
if self._model_dir is not None: | |
os.environ['KERAS_HOME'] = self._model_dir | |
try: | |
pretrained_model_class = locate('keras.applications.{}'.format(self._model_name)) | |
except TypeError: | |
pretrained_model_class = locate('keras.applications.{}.{}'.format(self._model_name.lower(), | |
self._model_name)) | |
return pretrained_model_class(**self._args) | |
elif self._type == ModelType.TF_BERT_HUGGINGFACE: | |
if self._model_dir is not None: | |
os.environ['TRANSFORMERS_CACHE'] = self._model_dir | |
from transformers import BertConfig, TFBertModel | |
config = BertConfig.from_pretrained(self._model_name, output_hidden_states=True) | |
return TFBertModel.from_pretrained(self._model_name, config=config, from_pt=True, **self._args) | |