ParamDev's picture
Upload folder using huggingface_hub
a01ef8c verified
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2022 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
#
import click
import inspect
import os
import shutil
import sys
from tlt.utils.types import FrameworkType
@click.command()
@click.option("--model-dir", "--model_dir",
required=True,
type=click.Path(exists=True, file_okay=False),
help="Model directory to reload for benchmarking. The model directory should contain a saved_model.pb for"
" TensorFlow models or a model.pt file for PyTorch models.")
@click.option("--dataset-dir", "--dataset_dir",
required=True,
type=click.Path(exists=True, file_okay=False),
help="Dataset directory for a custom dataset. Benchmarking is not supported with dataset catalogs at "
"this time.")
@click.option("--dataset-file", "--dataset_file",
required=False,
type=str,
help="Name of a file in the dataset directory to load. Used for loading a .csv file for text "
"classification fine tuning.")
@click.option("--delimiter",
required=False,
type=str,
default=",",
help="Delimiter used when loading a dataset from a csv file. [default: ,]")
@click.option("--batch-size", "--batch_size",
required=False,
type=click.IntRange(min=1),
default=32,
show_default=True,
help="Batch size used for benchmarking, if an INC config file is not provided. If an INC config file is "
"provided, the batch size from the config file will be used.")
@click.option("--output-dir", "--output_dir",
required=False,
type=click.Path(file_okay=False),
help="A writeable output directory. The output directory will be used as a location to write the INC "
"config file, if a config file is not provided. If no output directory is provided, a temporary "
"folder will be created and then deleted after benchmarking has completed.")
def benchmark(model_dir, dataset_dir, batch_size, output_dir, dataset_file, delimiter):
"""
Uses the Intel Neural Compressor to benchmark a trained model
"""
print("Model directory:", model_dir)
print("Dataset directory:", dataset_dir)
print("Batch size:", batch_size)
if output_dir:
print("Output directory:", output_dir)
saved_model_path = os.path.join(model_dir, "saved_model.pb")
pytorch_model_path = os.path.join(model_dir, "model.pt")
if os.path.isfile(saved_model_path):
framework = FrameworkType.TENSORFLOW
elif os.path.isfile(pytorch_model_path):
framework = FrameworkType.PYTORCH
else:
sys.exit("Benchmarking is currently only implemented for TensorFlow saved_model.pb and PyTorch model.pt "
"models. No such files found in the model directory ({}).".format(model_dir))
model_name = os.path.basename(os.path.dirname(model_dir))
print("Model name:", model_name)
print("Framework:", framework)
temp_dir = None
try:
from tlt.models.model_factory import get_model
model = get_model(model_name, framework)
except Exception as e:
sys.exit("An error occurred while getting the model: {}\nNote that the model directory is expected to contain "
"a previously exported model where the directory structure is <model name>/n/saved_model.pb "
"(for TensorFlow) or <model name>/n/model.pt (for PyTorch).".format(str(e)))
try:
from tlt.datasets import dataset_factory
if str(model.use_case) == "image_classification":
dataset = dataset_factory.load_dataset(dataset_dir, model.use_case, model.framework)
elif str(model.use_case) == 'text_classification':
if not dataset_file:
raise ValueError("Loading a text classification dataset requires --dataset-file to specify the "
"file name of the .csv file to load from the --dataset-dir.")
if not delimiter:
raise ValueError("Loading a text classification dataset requires --delimiter in order to read the "
".csv file from the --dataset-dir. in the correct format")
dataset = dataset_factory.load_dataset(dataset_dir, model.use_case, model.framework,
csv_file_name=dataset_file, delimiter=delimiter)
else:
sys.exit("ERROR: Benchmarking is currently only implemented for Image Classification "
"and Text Classification models")
# Preprocess, batch, and split
if 'image_size' in inspect.getfullargspec(dataset.preprocess).args: # For Image classification
dataset.preprocess(image_size=model.image_size, batch_size=batch_size)
elif 'model_name' in inspect.getfullargspec(dataset.preprocess).args: # For HF Text classification
dataset.preprocess(model_name=model_name, batch_size=batch_size)
else: # For TF Text classification
dataset.preprocess(batch_size=batch_size)
dataset.shuffle_split()
# Call the benchmarking API
print("Starting benchmarking", flush=True)
try:
model.benchmark(dataset, saved_model_dir=model_dir)
except TypeError:
model.load_from_directory(model_dir)
model.benchmark(dataset)
except AttributeError:
model._model = model._get_hub_model(model_name, len(dataset.class_names))
model.benchmark(dataset, saved_model_dir=model_dir)
except Exception as e:
sys.exit("An error occurred during benchmarking: {}".format(str(e)))
finally:
# Remove the temp directory, if we created one
if temp_dir and os.path.exists(temp_dir):
shutil.rmtree(temp_dir)