ParamDev's picture
Upload folder using huggingface_hub
a01ef8c verified
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2022 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
#
import click
import inspect
import os
import sys
from tlt.utils.types import FrameworkType
from tlt.utils.inc_utils import get_inc_config
@click.command()
@click.option("--model-dir", "--model_dir",
required=True,
type=click.Path(exists=True, file_okay=False),
help="Model directory to reload for quantization. The model directory should contain a saved_model.pb "
"for TensorFlow models or a model.pt file for PyTorch models.")
@click.option("--dataset-dir", "--dataset_dir",
required=True,
type=click.Path(exists=True, file_okay=False),
help="Dataset directory for a custom dataset. Quantization is not supported with dataset catalogs at "
"this time.")
@click.option("--dataset-file", "--dataset_file",
required=False,
type=str,
help="Name of a file in the dataset directory to load. Used for loading a .csv file for text "
"classification fine tuning.")
@click.option("--delimiter",
required=False,
type=str,
default=",",
help="Delimiter used when loading a dataset from a csv file. [default: ,]")
@click.option("--batch-size", "--batch_size",
required=False,
type=click.IntRange(min=1),
default=32,
show_default=True,
help="Batch size used during quantization, if an INC config file is not provided. If an INC config file "
"is provided, the batch size from the config file will be used.")
@click.option("--approach",
required=False,
type=click.Choice(['static', 'dynamic'], case_sensitive=False),
default='static',
show_default=True,
help="Specify to use static or dynamic quantization. Generally, static is recommended for image models "
"and dynamic is recommended for text models.")
@click.option("--accuracy-criterion", "--accuracy_criterion",
required=False,
type=click.FloatRange(min=0, max=1.0),
default=0.01,
show_default=True,
help="Relative accuracy loss to allow (for example, a value of 0.01 allows for a relative accuracy "
"loss of 1%), if an INC config file is not provided. If an INC config file is provided, the "
"accuracy criterion from the config file will be used.")
@click.option("--timeout",
required=False,
type=click.IntRange(min=0),
default=0,
show_default=True,
help="Tuning timeout in seconds, if an INC config file is not provided. If an INC config file is "
"provided, the timeout from the config file will be used. Tuning processing finishes when the "
"timeout or max trials is reached. A tuning timeout of 0 means that the tuning phase stops when "
"the accuracy criterion is met.")
@click.option("--max-trials", "--max_trials",
required=False,
type=click.IntRange(min=0),
default=50,
show_default=True,
help="Maximum number of tuning trials, if an INC config file is not provided. If an INC config file is "
"provided, the number of max trials from the config file will be used. Tuning processing finishes "
"when the timeout or max trials is reached.")
@click.option("--output-dir", "--output_dir",
required=True,
type=click.Path(file_okay=False),
help="A writeable output directory. The output directory will be used as a location to save the "
"quantized model, the tuning workspace, and the INC config file, if a config file is not provided.")
def quantize(model_dir, dataset_dir, dataset_file, delimiter, batch_size, approach, accuracy_criterion, timeout,
max_trials, output_dir):
"""
Uses the Intel Neural Compressor to perform post-training quantization on a trained model
"""
print("Model directory:", model_dir)
print("Dataset directory:", dataset_dir)
print("Quantization approach:", approach)
print("Accuracy criterion:", accuracy_criterion)
print("Exit policy timeout:", timeout)
print("Exit policy max trials:", max_trials)
print("Batch size:", batch_size)
print("Output directory:", output_dir)
try:
# Create the output directory, if it doesn't exist
from tlt.utils.file_utils import verify_directory
verify_directory(output_dir, require_directory_exists=False)
except Exception as e:
sys.exit("Error while verifying the output directory: {}", str(e))
saved_model_path = os.path.join(model_dir, "saved_model.pb")
pytorch_model_path = os.path.join(model_dir, "model.pt")
if os.path.isfile(saved_model_path):
framework = FrameworkType.TENSORFLOW
elif os.path.isfile(pytorch_model_path):
framework = FrameworkType.PYTORCH
else:
sys.exit("Quantization is currently only implemented for TensorFlow saved_model.pb and PyTorch model.pt "
"models. No such files found in the model directory ({}).".format(model_dir))
# Get the model name from the directory path, assuming models are exported like <model name>/n
model_name = os.path.basename(os.path.dirname(model_dir))
print("Model name:", model_name)
print("Framework:", framework)
try:
from tlt.models.model_factory import get_model
model = get_model(model_name, framework)
model.load_from_directory(model_dir)
except Exception as e:
sys.exit("An error occurred while getting the model: {}\nNote that the model directory is expected to contain "
"a previously exported model where the directory structure is <model name>/n/saved_model.pb "
"(for TensorFlow) or <model name>/n/model.pt (for PyTorch).".format(str(e)))
try:
from tlt.datasets import dataset_factory
if str(model.use_case) == "image_classification":
dataset = dataset_factory.load_dataset(dataset_dir, model.use_case, model.framework)
elif str(model.use_case) == "text_classification":
if not dataset_file:
raise ValueError("Loading a text classification dataset requires --dataset-file to specify the "
"file name of the .csv file to load from the --dataset-dir.")
if not delimiter:
raise ValueError("Loading a text classification dataset requires --delimiter in order to read the "
".csv file from the --dataset-dir. in the correct format")
dataset = dataset_factory.load_dataset(dataset_dir, model.use_case, model.framework,
csv_file_name=dataset_file, delimiter=delimiter)
else:
sys.exit("ERROR: Quantization is currently only implemented for Image Classification "
"and Text Classification models")
# Preprocess, batch, and split
if 'image_size' in inspect.getfullargspec(dataset.preprocess).args: # For Image classification
dataset.preprocess(image_size=model.image_size, batch_size=batch_size)
elif 'model_name' in inspect.getfullargspec(dataset.preprocess).args: # For HF Text classification
dataset.preprocess(model_name=model_name, batch_size=batch_size)
else: # For TF Text classification
dataset.preprocess(batch_size=batch_size)
dataset.shuffle_split()
# Generate a default inc config
inc_config = get_inc_config(approach, accuracy_criterion, timeout, max_trials)
# Setup a directory for the quantized model
quantized_output_dir = os.path.join(output_dir, "quantized", model_name)
verify_directory(quantized_output_dir)
if len(os.listdir(quantized_output_dir)) > 0:
quantized_output_dir = os.path.join(quantized_output_dir, "{}".format(
len(os.listdir(quantized_output_dir)) + 1))
else:
quantized_output_dir = os.path.join(quantized_output_dir, "1")
# Call the quantization API
print("Starting post-training quantization", flush=True)
model.quantize(quantized_output_dir, dataset, config=inc_config)
except Exception as e:
sys.exit("An error occurred during quantization: {}".format(str(e)))