Spaces:
Configuration error
Configuration error
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
# | |
# Copyright (c) 2023 Intel Corporation | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
def prepare_huggingface_input_data(dataset, hub_name, max_seq_length): | |
""" | |
Prepares the input data using the BertTokenizer from Hugging Face for TensorFlow | |
Args: | |
dataset (TensorFlow dataset): The TensorFlow dataset to preprocess | |
hub_name (str): The name of the Hugging Face model | |
max_seq_length (int): The maximum sentence length to use | |
Returns: | |
Tokenized input and labels | |
""" | |
from transformers import BertTokenizer | |
tokenizer = BertTokenizer.from_pretrained(hub_name) | |
data_converted = { | |
'sentences': [], | |
'labels': [], | |
} | |
for elem in dataset.as_numpy_iterator(): | |
# elem would be in the following format: | |
# (array([sentence1, sentence2, ...]), array([label1, label2, ...])) | |
data_converted['sentences'].extend(elem[0]) | |
data_converted['labels'].extend(elem[1]) | |
data_converted["sentences"] = [x.decode() for x in data_converted['sentences']] | |
tokenized_dataset = tokenizer(data_converted['sentences'], padding='max_length', | |
max_length=max_seq_length, truncation=True, return_tensors='tf') | |
return tokenized_dataset, data_converted['labels'] | |