Spaces:
Configuration error
Configuration error
Create dataset.py
Browse files- dataset.py +110 -0
dataset.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
from torch.utils.data import Dataset
|
4 |
+
from PIL import Image
|
5 |
+
import torchvision.transforms as transforms
|
6 |
+
from torchvision.transforms.functional import InterpolationMode
|
7 |
+
|
8 |
+
|
9 |
+
class Mvtec(Dataset):
|
10 |
+
def __init__(self, root_dir, object_type=None, split=None, defect_type=None, im_size=None, transform=None):
|
11 |
+
self.root_dir = root_dir
|
12 |
+
self.object_type = object_type
|
13 |
+
self.split = split
|
14 |
+
self.defect_type = defect_type # 'all' or specific defect type for test split
|
15 |
+
self.im_size = im_size
|
16 |
+
|
17 |
+
self.image_paths = [] # List to store full paths to images
|
18 |
+
self.labels = [] # List to store corresponding labels (0 for good, 1 for anomaly)
|
19 |
+
|
20 |
+
# Define default transforms if none are provided
|
21 |
+
if transform:
|
22 |
+
self.transform = transform
|
23 |
+
else:
|
24 |
+
imagenet_mean = [0.485, 0.456, 0.406]
|
25 |
+
imagenet_std = [0.229, 0.224, 0.225]
|
26 |
+
self.im_size = (224, 224) if im_size is None else (im_size, im_size)
|
27 |
+
normalize_tf = transforms.Normalize(mean=imagenet_mean, std=imagenet_std)
|
28 |
+
self.transform = transforms.Compose([
|
29 |
+
transforms.Resize(tuple(self.im_size), interpolation=InterpolationMode.LANCZOS),
|
30 |
+
transforms.ToTensor(),
|
31 |
+
normalize_tf
|
32 |
+
])
|
33 |
+
|
34 |
+
self._load_data() # Call the method to populate image_paths and labels
|
35 |
+
|
36 |
+
self.num_classes = 1 # Binary classification (normal/anomaly)
|
37 |
+
|
38 |
+
def _load_data(self):
|
39 |
+
\"\"\"
|
40 |
+
Loads image paths and assigns labels based on the folder structure.
|
41 |
+
\"\"\"
|
42 |
+
# Path to the specific object type (e.g., data/bottle)
|
43 |
+
object_path = os.path.join(self.root_dir, self.object_type)
|
44 |
+
|
45 |
+
# Path to the split directory (e.g., data/bottle/train or data/bottle/test)
|
46 |
+
split_path = os.path.join(object_path, self.split)
|
47 |
+
|
48 |
+
if not os.path.isdir(split_path):
|
49 |
+
raise FileNotFoundError(f"Split directory not found: {split_path}")
|
50 |
+
|
51 |
+
if self.split == 'train':
|
52 |
+
# For training, only load images from the 'good' subdirectory
|
53 |
+
good_images_path = os.path.join(split_path, 'good')
|
54 |
+
if not os.path.isdir(good_images_path):
|
55 |
+
raise FileNotFoundError(f"Training 'good' images directory not found: {good_images_path}")
|
56 |
+
|
57 |
+
for img_name in os.listdir(good_images_path):
|
58 |
+
# Filter for common image file extensions
|
59 |
+
if img_name.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.tiff')):
|
60 |
+
self.image_paths.append(os.path.join(good_images_path, img_name))
|
61 |
+
self.labels.append(0) # 0 for good images (normal)
|
62 |
+
|
63 |
+
elif self.split == 'test':
|
64 |
+
# For testing, iterate through all subdirectories (good and defect types)
|
65 |
+
subdirs = [d for d in os.listdir(split_path) if os.path.isdir(os.path.join(split_path, d))]
|
66 |
+
subdirs.sort() # Ensure consistent order
|
67 |
+
|
68 |
+
for subdir_name in subdirs:
|
69 |
+
# If defect_type is specified and not 'all', only load that specific defect
|
70 |
+
if self.defect_type != 'all' and subdir_name != self.defect_type and subdir_name != 'good':
|
71 |
+
continue # Skip other defect types if a specific one is requested
|
72 |
+
|
73 |
+
current_dir_path = os.path.join(split_path, subdir_name)
|
74 |
+
|
75 |
+
for img_name in os.listdir(current_dir_path):
|
76 |
+
if img_name.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.tiff')):
|
77 |
+
self.image_paths.append(os.path.join(current_dir_path, img_name))
|
78 |
+
# Label 0 for 'good', 1 for any other defect type
|
79 |
+
self.labels.append(0 if subdir_name == 'good' else 1)
|
80 |
+
else:
|
81 |
+
raise ValueError(f"Invalid split: '{self.split}'. Must be 'train' or 'test'.")
|
82 |
+
|
83 |
+
if not self.image_paths:
|
84 |
+
raise RuntimeError(f"No images found for object_type '{self.object_type}' in '{self.split}' split.")
|
85 |
+
|
86 |
+
|
87 |
+
def __len__(self):
|
88 |
+
return len(self.image_paths)
|
89 |
+
|
90 |
+
def __getitem__(self, idx):
|
91 |
+
img_path = self.image_paths[idx]
|
92 |
+
image = Image.open(img_path)
|
93 |
+
|
94 |
+
# Convert grayscale images to RGB if necessary
|
95 |
+
if image.mode == 'L':
|
96 |
+
image = image.convert('RGB')
|
97 |
+
|
98 |
+
image = self.transform(image)
|
99 |
+
labels = self.labels[idx] # Labels are already prepared in _load_data
|
100 |
+
|
101 |
+
sample = {'data': image, 'label': labels, 'image_path': img_path} # Added image_path for debugging/info
|
102 |
+
|
103 |
+
return sample
|
104 |
+
|
105 |
+
def getclasses(self):
|
106 |
+
classes = [str(i) for i in range(self.num_classes)]
|
107 |
+
c = dict()
|
108 |
+
for i in range(len(classes)):
|
109 |
+
c[i] = classes[i]
|
110 |
+
return c
|