Initial upload of files
Browse files- .gitattributes +1 -35
- .gitignore +13 -0
- README.md +112 -6
- app.py +203 -0
- requirements.txt +5 -0
.gitattributes
CHANGED
@@ -1,35 +1 @@
|
|
1 |
-
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
demo.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.gitignore
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Ignore Python bytecode files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
|
5 |
+
# Ignore virtual environments
|
6 |
+
venv/
|
7 |
+
.venv/
|
8 |
+
|
9 |
+
# Ignore API keys and configuration files
|
10 |
+
.env
|
11 |
+
|
12 |
+
# Ignore model files and other large files
|
13 |
+
model/
|
README.md
CHANGED
@@ -1,12 +1,118 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Real-ESRGAN Dual-Mode Image Upscaler
|
3 |
+
emoji: 🖼️
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: green
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.31.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: mit
|
11 |
---
|
12 |
+
# 🖼️ SpectraGAN Dual-Mode Image Upscaler
|
13 |
|
14 |
+
A lightweight Gradio web app to upscale any image using the Real-ESRGAN model. Simply upload your photo, choose either **Standard Upscale** (×4) or **Premium Upscale** (×8), and download the upscaled image.
|
15 |
+
|
16 |
+
---
|
17 |
+
|
18 |
+
## 📑 Table of Contents
|
19 |
+
|
20 |
+
1. [Features](#features)
|
21 |
+
2. [Project Structure](#project-structure)
|
22 |
+
3. [Prerequisites](#prerequisites)
|
23 |
+
4. [Installation](#installation)
|
24 |
+
5. [Running Locally](#running-locally)
|
25 |
+
6. [Usage](#usage)
|
26 |
+
7. [Contributing](#contributing)
|
27 |
+
8. [License](#license)
|
28 |
+
9. [Author & Credits](#author--credits)
|
29 |
+
|
30 |
+
---
|
31 |
+
|
32 |
+
## ✨ Features
|
33 |
+
|
34 |
+
- **Standard Upscale (×4)**
|
35 |
+
Enhance image resolution by 4x for clearer and larger images.
|
36 |
+
|
37 |
+
- **Premium Upscale (×8)**
|
38 |
+
Upscales first to 4x and then resizes using bicubic interpolation for even higher resolution (8x).
|
39 |
+
|
40 |
+
- **Live Preview**
|
41 |
+
See your original and upscaled images side by side before downloading.
|
42 |
+
|
43 |
+
- **Instant Download**
|
44 |
+
Export the upscaled image as a PNG and use it immediately.
|
45 |
+
|
46 |
+
---
|
47 |
+
|
48 |
+
## 📁 Project Structure
|
49 |
+
|
50 |
+
```
|
51 |
+
upscale-project/
|
52 |
+
├── model/
|
53 |
+
│ └── Real-ESRGAN-x4plus.onnx # ONNX model for upscaling
|
54 |
+
├── app.py # Main application file
|
55 |
+
├── requirements.txt # List of Python dependencies
|
56 |
+
├── .gitignore # Git ignore file to exclude unnecessary files
|
57 |
+
├── LICENSE # License file for the project
|
58 |
+
└── README.md # Project documentation
|
59 |
+
```
|
60 |
+
|
61 |
+
---
|
62 |
+
|
63 |
+
---
|
64 |
+
|
65 |
+
## ⚙️ Prerequisites
|
66 |
+
|
67 |
+
- Python 3.10 or higher
|
68 |
+
- `git`
|
69 |
+
- A terminal / command prompt
|
70 |
+
|
71 |
+
---
|
72 |
+
|
73 |
+
## 🔧 Installation
|
74 |
+
|
75 |
+
1. Clone this repository:
|
76 |
+
|
77 |
+
```bash
|
78 |
+
git clone https://github.com/salmanalfarisi11/Upscaler_images.git
|
79 |
+
cd Upscaler_images
|
80 |
+
```
|
81 |
+
|
82 |
+
2. Create and activate a virtual environment:
|
83 |
+
|
84 |
+
```bash
|
85 |
+
python -m venv .venv
|
86 |
+
source .venv/bin/activate # Linux/macOS
|
87 |
+
.venv\Scripts\activate # Windows
|
88 |
+
```
|
89 |
+
|
90 |
+
3. Install dependencies:
|
91 |
+
|
92 |
+
```bash
|
93 |
+
pip install -r requirements.txt
|
94 |
+
```
|
95 |
+
|
96 |
+
## 🚀 Running Locally
|
97 |
+
|
98 |
+
Launch the app on your machine:
|
99 |
+
|
100 |
+
```bash
|
101 |
+
python app.py
|
102 |
+
```
|
103 |
+
|
104 |
+
By default, it will start on <http://127.0.0.1:7860/>. Open that URL in your browser to access the interface.
|
105 |
+
|
106 |
+
## 🎯 Usage
|
107 |
+
|
108 |
+
1. **Upload Photo** via the left panel.
|
109 |
+
2. **Choose a Mode**:
|
110 |
+
- Click **Standard Upscale (×4)** for a 4x resolution increase.
|
111 |
+
- Click **Premium Upscale (×8)** for an 8x resolution increase.
|
112 |
+
3. Preview your result on the right side.
|
113 |
+
4. Click **Download PNG** to save the upscaled image.
|
114 |
+
|
115 |
+
## Acknowledgements
|
116 |
+
|
117 |
+
This project uses the Real-ESRGAN model developed by Xintao Wang.
|
118 |
+
The model is available under the BSD 3-Clause License.
|
app.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
+
import uuid
|
4 |
+
import numpy as np
|
5 |
+
import onnxruntime as ort
|
6 |
+
from PIL import Image
|
7 |
+
import gradio as gr
|
8 |
+
import tempfile
|
9 |
+
import requests
|
10 |
+
|
11 |
+
|
12 |
+
MODEL_DIR = "model"
|
13 |
+
MODEL_X2_PATH = os.path.join(MODEL_DIR, "Real-ESRGAN_x2plus.onnx")
|
14 |
+
MODEL_X4_PATH = os.path.join(MODEL_DIR, "Real-ESRGAN-x4plus.onnx")
|
15 |
+
|
16 |
+
|
17 |
+
FILE_ID_X2 = "15xmXXZNH2wMyeQv4ie5hagT7eWK9MgP6"
|
18 |
+
FILE_ID_X4 = "1wDBHad9RCJgJDGsPdapLYl3cr8j-PMJ6"
|
19 |
+
|
20 |
+
def download_from_drive(file_id: str, dest_path: str):
|
21 |
+
|
22 |
+
URL = "https://drive.google.com/uc?export=download"
|
23 |
+
session = requests.Session()
|
24 |
+
|
25 |
+
|
26 |
+
response = session.get(URL, params={"id": file_id}, stream=True)
|
27 |
+
token = None
|
28 |
+
for key, value in response.cookies.items():
|
29 |
+
if key.startswith('download_warning'):
|
30 |
+
token = value
|
31 |
+
break
|
32 |
+
|
33 |
+
|
34 |
+
if token:
|
35 |
+
params = {"id": file_id, "confirm": token}
|
36 |
+
response = session.get(URL, params=params, stream=True)
|
37 |
+
|
38 |
+
|
39 |
+
os.makedirs(os.path.dirname(dest_path), exist_ok=True)
|
40 |
+
with open(dest_path, "wb") as f:
|
41 |
+
for chunk in response.iter_content(chunk_size=32768):
|
42 |
+
if chunk:
|
43 |
+
f.write(chunk)
|
44 |
+
print(f"Model telah diunduh dan disimpan di {dest_path}")
|
45 |
+
return dest_path
|
46 |
+
|
47 |
+
|
48 |
+
if not os.path.isfile(MODEL_X2_PATH):
|
49 |
+
download_from_drive(FILE_ID_X2, MODEL_X2_PATH)
|
50 |
+
|
51 |
+
# Unduh model ×4
|
52 |
+
if not os.path.isfile(MODEL_X4_PATH):
|
53 |
+
download_from_drive(FILE_ID_X4, MODEL_X4_PATH)
|
54 |
+
|
55 |
+
|
56 |
+
sess_opts = ort.SessionOptions()
|
57 |
+
sess_opts.intra_op_num_threads = 2
|
58 |
+
sess_opts.inter_op_num_threads = 2
|
59 |
+
|
60 |
+
session_x2 = ort.InferenceSession(MODEL_X2_PATH, sess_options=sess_opts, providers=["CPUExecutionProvider"])
|
61 |
+
session_x4 = ort.InferenceSession(MODEL_X4_PATH, sess_options=sess_opts, providers=["CPUExecutionProvider"])
|
62 |
+
|
63 |
+
|
64 |
+
input_meta_x2 = session_x2.get_inputs()[0]
|
65 |
+
_, _, H_in_x2, W_in_x2 = tuple(input_meta_x2.shape)
|
66 |
+
H_in_x2, W_in_x2 = int(H_in_x2), int(W_in_x2)
|
67 |
+
|
68 |
+
input_meta_x4 = session_x4.get_inputs()[0]
|
69 |
+
_, _, H_in_x4, W_in_x4 = tuple(input_meta_x4.shape)
|
70 |
+
H_in_x4, W_in_x4 = int(H_in_x4), int(W_in_x4)
|
71 |
+
|
72 |
+
|
73 |
+
dummy_x2 = np.zeros((1, 3, H_in_x2, W_in_x2), dtype=np.float32)
|
74 |
+
dummy_out_x2 = session_x2.run(None, {input_meta_x2.name: dummy_x2})[0]
|
75 |
+
_, _, H_out_x2, W_out_x2 = dummy_out_x2.shape
|
76 |
+
SCALE_X2 = H_out_x2 // H_in_x2
|
77 |
+
if SCALE_X2 != 2:
|
78 |
+
raise RuntimeError(f"Model ×2 menghasilkan scale = {SCALE_X2}, bukan 2")
|
79 |
+
|
80 |
+
dummy_x4 = np.zeros((1, 3, H_in_x4, W_in_x4), dtype=np.float32)
|
81 |
+
dummy_out_x4 = session_x4.run(None, {input_meta_x4.name: dummy_x4})[0]
|
82 |
+
_, _, H_out_x4, W_out_x4 = dummy_out_x4.shape
|
83 |
+
SCALE_X4 = H_out_x4 // H_in_x4
|
84 |
+
if SCALE_X4 != 4:
|
85 |
+
raise RuntimeError(f"Model ×4 menghasilkan scale = {SCALE_X4}, bukan 4")
|
86 |
+
|
87 |
+
|
88 |
+
def run_tile_x2(tile_np: np.ndarray) -> np.ndarray:
|
89 |
+
patch_nchw = np.transpose(tile_np, (2, 0, 1))[None, ...]
|
90 |
+
out_nchw = session_x2.run(None, {input_meta_x2.name: patch_nchw})[0]
|
91 |
+
out_nchw = np.squeeze(out_nchw, axis=0)
|
92 |
+
out_hwc = np.transpose(out_nchw, (1, 2, 0))
|
93 |
+
return out_hwc
|
94 |
+
|
95 |
+
def run_tile_x4(tile_np: np.ndarray) -> np.ndarray:
|
96 |
+
patch_nchw = np.transpose(tile_np, (2, 0, 1))[None, ...]
|
97 |
+
out_nchw = session_x4.run(None, {input_meta_x4.name: patch_nchw})[0]
|
98 |
+
out_nchw = np.squeeze(out_nchw, axis=0)
|
99 |
+
out_hwc = np.transpose(out_nchw, (1, 2, 0))
|
100 |
+
return out_hwc
|
101 |
+
|
102 |
+
|
103 |
+
def tile_upscale(input_img: Image.Image, scale: int, max_dim=1024):
|
104 |
+
if scale == 2:
|
105 |
+
H_in, W_in, run_tile, SCALE = H_in_x2, W_in_x2, run_tile_x2, SCALE_X2
|
106 |
+
else:
|
107 |
+
H_in, W_in, run_tile, SCALE = H_in_x4, W_in_x4, run_tile_x4, SCALE_X4
|
108 |
+
|
109 |
+
|
110 |
+
w, h = input_img.size
|
111 |
+
if w > max_dim or h > max_dim:
|
112 |
+
scale_factor = max_dim / float(max(w, h))
|
113 |
+
new_w = int(w * scale_factor)
|
114 |
+
new_h = int(h * scale_factor)
|
115 |
+
input_img = input_img.resize((new_w, new_h), Image.LANCZOS)
|
116 |
+
|
117 |
+
img_rgb = input_img.convert("RGB")
|
118 |
+
arr = np.array(img_rgb).astype(np.float32) / 255.0
|
119 |
+
h_orig, w_orig, _ = arr.shape
|
120 |
+
|
121 |
+
tiles_h = math.ceil(h_orig / H_in)
|
122 |
+
tiles_w = math.ceil(w_orig / W_in)
|
123 |
+
pad_h = tiles_h * H_in - h_orig
|
124 |
+
pad_w = tiles_w * W_in - w_orig
|
125 |
+
|
126 |
+
arr_padded = np.pad(arr, ((0, pad_h), (0, pad_w), (0, 0)), mode="reflect")
|
127 |
+
out_h = tiles_h * H_in * SCALE
|
128 |
+
out_w = tiles_w * W_in * SCALE
|
129 |
+
out_arr = np.zeros((out_h, out_w, 3), dtype=np.float32)
|
130 |
+
|
131 |
+
for i in range(tiles_h):
|
132 |
+
for j in range(tiles_w):
|
133 |
+
y0, x0 = i * H_in, j * W_in
|
134 |
+
tile = arr_padded[y0:y0+H_in, x0:x0+W_in, :]
|
135 |
+
up_tile = run_tile(tile)
|
136 |
+
oy0, ox0 = i * H_in * SCALE, j * W_in * SCALE
|
137 |
+
out_arr[oy0:oy0 + H_in * SCALE, ox0:ox0 + W_in * SCALE, :] = up_tile
|
138 |
+
|
139 |
+
final_arr = out_arr[0:h_orig * SCALE, 0:w_orig * SCALE, :]
|
140 |
+
final_arr = np.clip(final_arr, 0.0, 1.0)
|
141 |
+
final_uint8 = (final_arr * 255.0).round().astype(np.uint8)
|
142 |
+
final_pil = Image.fromarray(final_uint8)
|
143 |
+
|
144 |
+
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
|
145 |
+
final_pil.save(tmp.name, format="PNG")
|
146 |
+
tmp.close()
|
147 |
+
return final_pil, tmp.name
|
148 |
+
|
149 |
+
|
150 |
+
def upscale_x2(input_img: Image.Image):
|
151 |
+
return tile_upscale(input_img, scale=2)
|
152 |
+
|
153 |
+
def standard_upscale(input_img: Image.Image):
|
154 |
+
return tile_upscale(input_img, scale=4)
|
155 |
+
|
156 |
+
def premium_upscale(input_img: Image.Image):
|
157 |
+
final_4x, _ = tile_upscale(input_img, scale=4)
|
158 |
+
w_orig, h_orig = input_img.size
|
159 |
+
target_size = (w_orig * 8, h_orig * 8)
|
160 |
+
final_8x = final_4x.resize(target_size, resample=Image.LANCZOS)
|
161 |
+
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
|
162 |
+
final_8x.save(tmp.name, format="PNG")
|
163 |
+
tmp.close()
|
164 |
+
return final_8x, tmp.name
|
165 |
+
|
166 |
+
|
167 |
+
css = """
|
168 |
+
#x2-btn {
|
169 |
+
background-color: lightgreen !important;
|
170 |
+
color: black !important;
|
171 |
+
}
|
172 |
+
#premium-btn {
|
173 |
+
background-color: gold !important;
|
174 |
+
color: black !important;
|
175 |
+
}
|
176 |
+
"""
|
177 |
+
|
178 |
+
|
179 |
+
with gr.Blocks(css=css, title="SpectraGAN Triple-Mode Upscaler") as demo:
|
180 |
+
gr.Markdown(
|
181 |
+
"""
|
182 |
+
# SpectraGAN Upscaler
|
183 |
+
**Upscale (×2)**, **Standard Upscale (×4)** atau **Premium Upscale 🚀 (×8)**.
|
184 |
+
|
185 |
+
"""
|
186 |
+
)
|
187 |
+
|
188 |
+
with gr.Row():
|
189 |
+
inp_image = gr.Image(type="pil", label="Upload Source Image")
|
190 |
+
|
191 |
+
with gr.Row():
|
192 |
+
btn_x2 = gr.Button("Upscale (×2)", elem_id="x2-btn")
|
193 |
+
btn_std = gr.Button("Standard Upscale (×4)", variant="primary", elem_id="std-btn")
|
194 |
+
btn_prem = gr.Button("Premium Upscale 🚀 (×8)", elem_id="premium-btn")
|
195 |
+
|
196 |
+
out_preview = gr.Image(type="pil", label="Upscaled Preview")
|
197 |
+
out_download = gr.DownloadButton("⬇️ Download PNG", visible=True)
|
198 |
+
|
199 |
+
btn_x2.click(fn=upscale_x2, inputs=inp_image, outputs=[out_preview, out_download])
|
200 |
+
btn_std.click(fn=standard_upscale, inputs=inp_image, outputs=[out_preview, out_download])
|
201 |
+
btn_prem.click(fn=premium_upscale, inputs=inp_image, outputs=[out_preview, out_download])
|
202 |
+
|
203 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
onnxruntime # ONNX inference engine (CPU)
|
2 |
+
numpy # Array manipulation
|
3 |
+
Pillow # Image I/O
|
4 |
+
gradio>=3.0 # Web UI
|
5 |
+
requests
|