Spaces:
Sleeping
Sleeping
Update smart_suggestion/flan_suggestor.py
Browse files
smart_suggestion/flan_suggestor.py
CHANGED
@@ -1,71 +1,74 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
import pandas as pd
|
4 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
-
|
6 |
-
# Load model
|
7 |
-
model_name = "google/flan-t5-small"
|
8 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
10 |
-
|
11 |
-
# Load all product CSVs from nested directories
|
12 |
-
def load_all_product_data(base_path="data"):
|
13 |
-
all_data = []
|
14 |
-
for root, dirs, files in os.walk(base_path):
|
15 |
-
for file in files:
|
16 |
-
if file.endswith(".csv"):
|
17 |
-
full_path = os.path.join(root, file)
|
18 |
-
df = pd.read_csv(full_path)
|
19 |
-
df["Brand"] = os.path.splitext(file)[0]
|
20 |
-
df["Store"] = root.split(os.sep)[-4] # e.g., "Store C"
|
21 |
-
df["Category"] = root.split(os.sep)[-2]
|
22 |
-
all_data.append(df)
|
23 |
-
return pd.concat(all_data, ignore_index=True)
|
24 |
-
|
25 |
-
df = load_all_product_data("data")
|
26 |
-
|
27 |
-
# Generate smart suggestion
|
28 |
-
def generate_product_description(prompt):
|
29 |
-
prompt = prompt.lower()
|
30 |
-
|
31 |
-
# Basic price filter
|
32 |
-
price_limit = 99999
|
33 |
-
if "under" in prompt:
|
34 |
-
try:
|
35 |
-
price_limit = int(prompt.split("under")[-1].split()[0])
|
36 |
-
except:
|
37 |
-
pass
|
38 |
-
|
39 |
-
filtered_df = df[df["Price"] <= price_limit]
|
40 |
-
filtered_df = filtered_df[df["In Stock"].str.lower() == "yes"]
|
41 |
-
|
42 |
-
if "dry hair" in prompt:
|
43 |
-
filtered_df = filtered_df[filtered_df["Hair Type"].str.lower().str.contains("dry", na=False)]
|
44 |
-
elif "oily hair" in prompt:
|
45 |
-
filtered_df = filtered_df[filtered_df["Hair Type"].str.lower().str.contains("oily", na=False)]
|
46 |
-
elif "normal hair" in prompt:
|
47 |
-
filtered_df = filtered_df[filtered_df["Hair Type"].str.lower().str.contains("normal", na=False)]
|
48 |
-
|
49 |
-
if "gift" in prompt:
|
50 |
-
filtered_df = filtered_df[filtered_df["Tags"].str.contains("gift", case=False, na=False)]
|
51 |
-
if "budget" in prompt:
|
52 |
-
filtered_df = filtered_df[filtered_df["Tags"].str.contains("budget", case=False, na=False)]
|
53 |
-
|
54 |
-
if filtered_df.empty:
|
55 |
-
return "🤷 Sorry, no matching suggestions found."
|
56 |
-
|
57 |
-
rows = []
|
58 |
-
for _, row in filtered_df.iterrows():
|
59 |
-
|
60 |
-
if pd.notna(row.get("Offer")) and str(row["Offer"]).strip():
|
61 |
-
|
62 |
-
rows.append(
|
63 |
-
|
64 |
-
product_text = "\n".join(rows)
|
65 |
-
model_prompt = f"Suggest top products:\n{product_text}"
|
66 |
-
|
67 |
-
input_ids = tokenizer(model_prompt, return_tensors="pt").input_ids
|
68 |
-
with torch.no_grad():
|
69 |
-
output_ids = model.generate(input_ids, max_new_tokens=100)
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import pandas as pd
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
+
|
6 |
+
# Load model
|
7 |
+
model_name = "google/flan-t5-small"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
10 |
+
|
11 |
+
# Load all product CSVs from nested directories
|
12 |
+
def load_all_product_data(base_path="data"):
|
13 |
+
all_data = []
|
14 |
+
for root, dirs, files in os.walk(base_path):
|
15 |
+
for file in files:
|
16 |
+
if file.endswith(".csv"):
|
17 |
+
full_path = os.path.join(root, file)
|
18 |
+
df = pd.read_csv(full_path)
|
19 |
+
df["Brand"] = os.path.splitext(file)[0]
|
20 |
+
df["Store"] = root.split(os.sep)[-4] # e.g., "Store C"
|
21 |
+
df["Category"] = root.split(os.sep)[-2]
|
22 |
+
all_data.append(df)
|
23 |
+
return pd.concat(all_data, ignore_index=True)
|
24 |
+
|
25 |
+
df = load_all_product_data("data")
|
26 |
+
|
27 |
+
# Generate smart suggestion
|
28 |
+
def generate_product_description(prompt):
|
29 |
+
prompt = prompt.lower()
|
30 |
+
|
31 |
+
# Basic price filter
|
32 |
+
price_limit = 99999
|
33 |
+
if "under" in prompt:
|
34 |
+
try:
|
35 |
+
price_limit = int(prompt.split("under")[-1].split()[0])
|
36 |
+
except:
|
37 |
+
pass
|
38 |
+
|
39 |
+
filtered_df = df[df["Price"] <= price_limit]
|
40 |
+
filtered_df = filtered_df[df["In Stock"].str.lower() == "yes"]
|
41 |
+
|
42 |
+
if "dry hair" in prompt:
|
43 |
+
filtered_df = filtered_df[filtered_df["Hair Type"].str.lower().str.contains("dry", na=False)]
|
44 |
+
elif "oily hair" in prompt:
|
45 |
+
filtered_df = filtered_df[filtered_df["Hair Type"].str.lower().str.contains("oily", na=False)]
|
46 |
+
elif "normal hair" in prompt:
|
47 |
+
filtered_df = filtered_df[filtered_df["Hair Type"].str.lower().str.contains("normal", na=False)]
|
48 |
+
|
49 |
+
if "gift" in prompt:
|
50 |
+
filtered_df = filtered_df[filtered_df["Tags"].str.contains("gift", case=False, na=False)]
|
51 |
+
if "budget" in prompt:
|
52 |
+
filtered_df = filtered_df[filtered_df["Tags"].str.contains("budget", case=False, na=False)]
|
53 |
+
|
54 |
+
if filtered_df.empty:
|
55 |
+
return "🤷 Sorry, no matching suggestions found."
|
56 |
+
|
57 |
+
rows = []
|
58 |
+
for _, row in filtered_df.iterrows():
|
59 |
+
line = f"{row['Brand']} {row['Quantity']} – ₹{row['Price']} (Floor {row['Floor']}, Aisle {row['Aisle']})"
|
60 |
+
if pd.notna(row.get("Offer")) and str(row["Offer"]).strip():
|
61 |
+
line += f"\n🎉 {row['Offer']}"
|
62 |
+
rows.append(line)
|
63 |
+
|
64 |
+
product_text = "\n".join(rows)
|
65 |
+
model_prompt = f"Suggest top products:\n{product_text}"
|
66 |
+
|
67 |
+
input_ids = tokenizer(model_prompt, return_tensors="pt").input_ids
|
68 |
+
with torch.no_grad():
|
69 |
+
output_ids = model.generate(input_ids, max_new_tokens=100)
|
70 |
+
|
71 |
+
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
72 |
+
|
73 |
+
# Combine product suggestions and model response line by line
|
74 |
+
return "\n\n".join(rows[:5]) + "\n\n🧠 AI Suggestion: " + response
|