Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,95 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
7 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
messages,
|
32 |
max_tokens=max_tokens,
|
33 |
stream=True,
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
):
|
37 |
-
token =
|
38 |
-
|
39 |
response += token
|
40 |
yield response
|
41 |
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
respond,
|
|
|
|
|
48 |
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a
|
50 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import re
|
4 |
from huggingface_hub import InferenceClient
|
5 |
|
6 |
+
# Load inventory dataset
|
7 |
+
df = pd.read_csv("inventory.csv")
|
8 |
+
|
9 |
+
# Hugging Face LLM client
|
10 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
11 |
|
12 |
+
# 🧞 RetailGenie logic
|
13 |
+
def retailgenie_query(user_input: str) -> str:
|
14 |
+
user_input = user_input.lower()
|
15 |
|
16 |
+
if "where can i find" in user_input:
|
17 |
+
product = user_input.split("find")[-1].strip()
|
18 |
+
match = df[df['Product Name'].str.lower().str.contains(product)]
|
19 |
+
if not match.empty:
|
20 |
+
return f"{product.title()} is in {match.iloc[0]['Aisle']}."
|
21 |
+
else:
|
22 |
+
return "Sorry, I couldn't find that product."
|
23 |
+
|
24 |
+
elif "in stock" in user_input:
|
25 |
+
product = re.sub(r"(is|in stock|\?)", "", user_input).strip()
|
26 |
+
match = df[df['Product Name'].str.lower().str.contains(product)]
|
27 |
+
if not match.empty:
|
28 |
+
return f"{product.title()} is {'available' if match.iloc[0]['In Stock'].lower() == 'yes' else 'out of stock'}."
|
29 |
+
else:
|
30 |
+
return "Product not found."
|
31 |
+
|
32 |
+
elif "suggest" in user_input and "under" in user_input:
|
33 |
+
category = user_input.split("suggest a")[-1].split("under")[0].strip()
|
34 |
+
try:
|
35 |
+
price = int(re.findall(r"\d+", user_input)[-1])
|
36 |
+
except:
|
37 |
+
return "Please enter a valid price."
|
38 |
+
matches = df[(df['Category'].str.lower().str.contains(category)) & (df['Price (rupees)'] <= price)]
|
39 |
+
if not matches.empty:
|
40 |
+
return "Here are some options: " + ", ".join(matches['Product Name'].values[:3])
|
41 |
+
else:
|
42 |
+
return "No items found in that range."
|
43 |
+
|
44 |
+
elif "deal" in user_input or "deals" in user_input:
|
45 |
+
electronics = df[df['Category'].str.lower() == "electronics"]
|
46 |
+
deals = electronics[electronics['Price (rupees)'] < 5000]
|
47 |
+
if not deals.empty:
|
48 |
+
return "Deals: " + ", ".join(deals['Product Name'].values[:3])
|
49 |
+
else:
|
50 |
+
return "No current deals found in electronics."
|
51 |
+
|
52 |
+
return None # Not a RetailGenie-style query
|
53 |
|
54 |
+
# 🔁 Unified response function
|
55 |
+
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
|
56 |
+
# First try product-aware logic
|
57 |
+
rg_reply = retailgenie_query(message)
|
58 |
+
if rg_reply:
|
59 |
+
yield rg_reply
|
60 |
+
return
|
61 |
|
62 |
+
# Else use LLM
|
63 |
+
messages = [{"role": "system", "content": system_message}]
|
64 |
+
for user, assistant in history:
|
65 |
+
if user: messages.append({"role": "user", "content": user})
|
66 |
+
if assistant: messages.append({"role": "assistant", "content": assistant})
|
67 |
messages.append({"role": "user", "content": message})
|
68 |
|
69 |
response = ""
|
70 |
+
for msg in client.chat_completion(
|
|
|
71 |
messages,
|
72 |
max_tokens=max_tokens,
|
73 |
stream=True,
|
74 |
temperature=temperature,
|
75 |
top_p=top_p,
|
76 |
):
|
77 |
+
token = msg.choices[0].delta.content
|
|
|
78 |
response += token
|
79 |
yield response
|
80 |
|
81 |
+
# 🧠 Gradio Chat UI
|
|
|
|
|
|
|
82 |
demo = gr.ChatInterface(
|
83 |
respond,
|
84 |
+
title="🧞 RetailGenie",
|
85 |
+
description="Ask me where to find products, check availability, get price-based suggestions, or talk to an AI.",
|
86 |
additional_inputs=[
|
87 |
+
gr.Textbox(value="You are a helpful retail assistant.", label="System message"),
|
88 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
89 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
90 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
91 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
)
|
93 |
|
|
|
94 |
if __name__ == "__main__":
|
95 |
demo.launch()
|