Spaces:
Sleeping
Sleeping
Upload flan_suggestor.py
Browse files
smart_suggestion/flan_suggestor.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 5 |
+
|
| 6 |
+
# Load model
|
| 7 |
+
model_name = "google/flan-t5-small"
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 9 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 10 |
+
|
| 11 |
+
# Load all product CSVs from nested directories
|
| 12 |
+
def load_all_product_data(base_path="data"):
|
| 13 |
+
all_data = []
|
| 14 |
+
for root, dirs, files in os.walk(base_path):
|
| 15 |
+
for file in files:
|
| 16 |
+
if file.endswith(".csv"):
|
| 17 |
+
full_path = os.path.join(root, file)
|
| 18 |
+
df = pd.read_csv(full_path)
|
| 19 |
+
df["Brand"] = os.path.splitext(file)[0]
|
| 20 |
+
df["Store"] = root.split(os.sep)[-4] # e.g., "Store C"
|
| 21 |
+
df["Category"] = root.split(os.sep)[-2]
|
| 22 |
+
all_data.append(df)
|
| 23 |
+
return pd.concat(all_data, ignore_index=True)
|
| 24 |
+
|
| 25 |
+
df = load_all_product_data("data")
|
| 26 |
+
|
| 27 |
+
# Generate smart suggestion
|
| 28 |
+
def generate_product_description(prompt):
|
| 29 |
+
prompt = prompt.lower()
|
| 30 |
+
|
| 31 |
+
# Basic price filter
|
| 32 |
+
price_limit = 99999
|
| 33 |
+
if "under" in prompt:
|
| 34 |
+
try:
|
| 35 |
+
price_limit = int(prompt.split("under")[-1].split()[0])
|
| 36 |
+
except:
|
| 37 |
+
pass
|
| 38 |
+
|
| 39 |
+
filtered_df = df[df["Price"] <= price_limit]
|
| 40 |
+
filtered_df = filtered_df[df["In Stock"].str.lower() == "yes"]
|
| 41 |
+
|
| 42 |
+
if "dry hair" in prompt:
|
| 43 |
+
filtered_df = filtered_df[filtered_df["Hair Type"].str.lower().str.contains("dry", na=False)]
|
| 44 |
+
elif "oily hair" in prompt:
|
| 45 |
+
filtered_df = filtered_df[filtered_df["Hair Type"].str.lower().str.contains("oily", na=False)]
|
| 46 |
+
elif "normal hair" in prompt:
|
| 47 |
+
filtered_df = filtered_df[filtered_df["Hair Type"].str.lower().str.contains("normal", na=False)]
|
| 48 |
+
|
| 49 |
+
if "gift" in prompt:
|
| 50 |
+
filtered_df = filtered_df[filtered_df["Tags"].str.contains("gift", case=False, na=False)]
|
| 51 |
+
if "budget" in prompt:
|
| 52 |
+
filtered_df = filtered_df[filtered_df["Tags"].str.contains("budget", case=False, na=False)]
|
| 53 |
+
|
| 54 |
+
if filtered_df.empty:
|
| 55 |
+
return "🤷 Sorry, no matching suggestions found."
|
| 56 |
+
|
| 57 |
+
rows = []
|
| 58 |
+
for _, row in filtered_df.iterrows():
|
| 59 |
+
text = f"{row['Brand']} {row['Quantity']} – ₹{row['Price']} (Floor {row['Floor']}, Aisle {row['Aisle']})"
|
| 60 |
+
if pd.notna(row.get("Offer")) and str(row["Offer"]).strip():
|
| 61 |
+
text += f" | 🎉 {row['Offer']}"
|
| 62 |
+
rows.append(text)
|
| 63 |
+
|
| 64 |
+
product_text = "\n".join(rows)
|
| 65 |
+
model_prompt = f"Suggest top products:\n{product_text}"
|
| 66 |
+
|
| 67 |
+
input_ids = tokenizer(model_prompt, return_tensors="pt").input_ids
|
| 68 |
+
with torch.no_grad():
|
| 69 |
+
output_ids = model.generate(input_ids, max_new_tokens=100)
|
| 70 |
+
|
| 71 |
+
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|