import os import torch import pandas as pd from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Load model model_name = "google/flan-t5-small" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) # Load all product CSVs from nested directories def load_all_product_data(base_path="data"): all_data = [] for root, dirs, files in os.walk(base_path): for file in files: if file.endswith(".csv"): full_path = os.path.join(root, file) df = pd.read_csv(full_path) df["Brand"] = os.path.splitext(file)[0] df["Store"] = root.split(os.sep)[-4] # e.g., "Store C" df["Category"] = root.split(os.sep)[-2] all_data.append(df) return pd.concat(all_data, ignore_index=True) df = load_all_product_data("data") # Generate smart suggestion def generate_product_description(prompt): prompt = prompt.lower() # Basic price filter price_limit = 99999 if "under" in prompt: try: price_limit = int(prompt.split("under")[-1].split()[0]) except: pass filtered_df = df[df["Price"] <= price_limit] filtered_df = filtered_df[df["In Stock"].str.lower() == "yes"] if "dry hair" in prompt: filtered_df = filtered_df[filtered_df["Hair Type"].str.lower().str.contains("dry", na=False)] elif "oily hair" in prompt: filtered_df = filtered_df[filtered_df["Hair Type"].str.lower().str.contains("oily", na=False)] elif "normal hair" in prompt: filtered_df = filtered_df[filtered_df["Hair Type"].str.lower().str.contains("normal", na=False)] if "gift" in prompt: filtered_df = filtered_df[filtered_df["Tags"].str.contains("gift", case=False, na=False)] if "budget" in prompt: filtered_df = filtered_df[filtered_df["Tags"].str.contains("budget", case=False, na=False)] if filtered_df.empty: return "🤷 Sorry, no matching suggestions found." rows = [] for _, row in filtered_df.iterrows(): line = f"{row['Brand']} {row['Quantity']} – ₹{row['Price']} (Floor {row['Floor']}, Aisle {row['Aisle']})" if pd.notna(row.get("Offer")) and str(row["Offer"]).strip(): line += f"\nšŸŽ‰ {row['Offer']}" rows.append(line) product_text = "\n".join(rows) model_prompt = f"Suggest top products:\n{product_text}" input_ids = tokenizer(model_prompt, return_tensors="pt").input_ids with torch.no_grad(): output_ids = model.generate(input_ids, max_new_tokens=100) response = tokenizer.decode(output_ids[0], skip_special_tokens=True) # Combine product suggestions and model response line by line return "\n\n".join(rows[:5]) + "\n\n🧠 AI Suggestion: " + response