Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,128 +1,60 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import
|
4 |
-
from fpdf import FPDF
|
5 |
-
import uuid
|
6 |
-
import re
|
7 |
-
import matplotlib.pyplot as plt
|
8 |
|
9 |
-
# Load
|
10 |
-
|
11 |
-
FOLDER_ID = os.getenv("FOLDER_ID") or "YOUR_FOLDER_ID"
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
You're a smart kitchen agent.
|
16 |
-
|
17 |
-
Given:
|
18 |
-
- Dietary preferences: {preferences}
|
19 |
-
- Ingredients available: {ingredients}
|
20 |
-
- Time available: {time} minutes
|
21 |
-
|
22 |
-
Tasks:
|
23 |
-
1. Suggest one meal idea
|
24 |
-
2. Provide step-by-step recipe instructions
|
25 |
-
3. List missing ingredients (Shopping List)
|
26 |
-
4. Estimate nutrition (calories, protein, carbs, fat)
|
27 |
-
|
28 |
-
Output in this format:
|
29 |
-
Meal Name: ...
|
30 |
-
Steps:
|
31 |
-
1. ...
|
32 |
-
2. ...
|
33 |
-
Shopping List:
|
34 |
-
- ...
|
35 |
-
Nutrition:
|
36 |
-
- Calories: ... kcal
|
37 |
-
- Protein: ... g
|
38 |
-
- Carbs: ... g
|
39 |
-
- Fat: ... g
|
40 |
-
"""
|
41 |
-
headers = {
|
42 |
-
"Authorization": f"Api-Key {NEBIUS_API_KEY}",
|
43 |
-
"Content-Type": "application/json"
|
44 |
-
}
|
45 |
-
data = {
|
46 |
-
"modelUri": f"gpt://{FOLDER_ID}/yandexgpt-lite",
|
47 |
-
"completionOptions": {"stream": False, "temperature": 0.7, "maxTokens": 700},
|
48 |
-
"messages": [{"role": "user", "text": prompt.strip()}]
|
49 |
-
}
|
50 |
-
response = requests.post("https://llm.api.cloud.yandex.net/foundationModels/v1/completion",
|
51 |
-
headers=headers, json=data)
|
52 |
try:
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
match = re.search(pattern, recipe_text.replace("\n", " "))
|
61 |
-
if match:
|
62 |
-
calories, protein, carbs, fat = map(float, match.groups())
|
63 |
-
return {"Calories": calories, "Protein": protein, "Carbs": carbs, "Fat": fat}
|
64 |
-
return None
|
65 |
-
|
66 |
-
def plot_nutrition_chart(nutrition):
|
67 |
-
fig, ax = plt.subplots()
|
68 |
-
nutrients = list(nutrition.keys())
|
69 |
-
values = list(nutrition.values())
|
70 |
-
colors = ['#ff9999','#66b3ff','#99ff99','#ffcc99']
|
71 |
-
ax.pie(values, labels=nutrients, autopct='%1.1f%%', startangle=140, colors=colors)
|
72 |
-
ax.axis('equal')
|
73 |
-
plt.tight_layout()
|
74 |
-
filename = f"/tmp/nutrition_{uuid.uuid4().hex}.png"
|
75 |
-
plt.savefig(filename)
|
76 |
-
plt.close(fig)
|
77 |
-
return filename
|
78 |
-
|
79 |
-
def handle_generate(preferences, ingredients, time):
|
80 |
-
recipe = generate_meal(preferences, ingredients, time)
|
81 |
-
nutrition = extract_nutrition(recipe)
|
82 |
-
chart_path = None
|
83 |
-
if nutrition:
|
84 |
-
chart_path = plot_nutrition_chart(nutrition)
|
85 |
-
return recipe, chart_path
|
86 |
-
|
87 |
-
def save_pdf(recipe_text):
|
88 |
-
pdf = FPDF()
|
89 |
-
pdf.add_page()
|
90 |
-
pdf.set_font("Arial", size=12)
|
91 |
-
for line in recipe_text.split('\n'):
|
92 |
-
pdf.multi_cell(0, 10, line)
|
93 |
-
filename = f"/tmp/AgentChef_Recipe_{uuid.uuid4().hex}.pdf"
|
94 |
-
pdf.output(filename)
|
95 |
-
return filename
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
.
|
100 |
-
.input-label { font-weight: 600; margin-bottom: 5px; }
|
101 |
-
.footer { font-size: 0.8rem; color: #666; padding: 10px; text-align: center; }
|
102 |
-
@media (max-width: 600px) {
|
103 |
-
.gradio-container { padding: 10px; }
|
104 |
-
}
|
105 |
-
""") as demo:
|
106 |
-
gr.Markdown("# 👨🍳 AgentChef: AI Recipe Planner & Smart Kitchen Assistant")
|
107 |
|
108 |
with gr.Row():
|
109 |
-
|
110 |
-
|
111 |
-
ingredients = gr.Textbox(label="🧂 Ingredients You Have", placeholder="e.g. rice, tomato, onion", lines=3)
|
112 |
-
mic = gr.Microphone(label="🎤 Speak Ingredients")
|
113 |
-
mic.stream(lambda audio: audio if audio else "", inputs=None, outputs=ingredients)
|
114 |
-
time = gr.Slider(5, 60, value=20, step=5, label="⏱️ Time Available (minutes)")
|
115 |
-
generate_btn = gr.Button("🍽️ Generate Recipe")
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
nutrition_chart = gr.Image(label="📊 Nutrition Breakdown", interactive=False)
|
120 |
-
pdf_btn = gr.Button("📄 Export as PDF")
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
|
126 |
-
|
|
|
127 |
|
128 |
-
demo.launch(
|
|
|
1 |
import gradio as gr
|
2 |
+
import arxiv
|
3 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
# Load summarization model
|
6 |
+
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
|
|
|
7 |
|
8 |
+
# Search and summarize papers
|
9 |
+
def search_and_summarize(topic, sort_by_option):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
try:
|
11 |
+
num_papers = 3 # fixed value
|
12 |
+
sort_mapping = {
|
13 |
+
"Relevance": arxiv.SortCriterion.Relevance,
|
14 |
+
"Most Recent": arxiv.SortCriterion.SubmittedDate
|
15 |
+
}
|
16 |
+
|
17 |
+
search = arxiv.Search(
|
18 |
+
query=topic,
|
19 |
+
max_results=num_papers,
|
20 |
+
sort_by=sort_mapping.get(sort_by_option, arxiv.SortCriterion.Relevance)
|
21 |
+
)
|
22 |
+
|
23 |
+
results = []
|
24 |
+
for result in search.results():
|
25 |
+
summary = summarizer(result.summary[:1000], max_length=120, min_length=30, do_sample=False)[0]['summary_text']
|
26 |
+
authors = ", ".join([author.name for author in result.authors])
|
27 |
+
published_date = result.published.date().strftime("%Y-%m-%d")
|
28 |
+
result_block = (
|
29 |
+
f"📘 *{result.title}*\n\n"
|
30 |
+
f"👩🔬 Authors: {authors}\n"
|
31 |
+
f"📅 Published: {published_date}\n\n"
|
32 |
+
f"📝 Summary: {summary}\n\n"
|
33 |
+
f"🔗 [Read More]({result.pdf_url})"
|
34 |
+
)
|
35 |
+
results.append(result_block)
|
36 |
+
|
37 |
+
return "\n\n---\n\n".join(results) if results else "No results found."
|
38 |
|
39 |
+
except Exception as e:
|
40 |
+
return f"⚠️ An error occurred: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
# Gradio UI
|
43 |
+
with gr.Blocks(theme=gr.themes.Base()) as demo:
|
44 |
+
gr.Markdown("# 🤖 AI Research Assistant\nSummarize academic research papers using Hugging Face models + Arxiv!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
with gr.Row():
|
47 |
+
topic = gr.Textbox(label="🔍 Enter your research topic", placeholder="e.g. diffusion models in AI")
|
48 |
+
sort_by = gr.Dropdown(choices=["Relevance", "Most Recent"], value="Relevance", label="Sort by")
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
search_btn = gr.Button("Search 🔎")
|
51 |
+
output = gr.Markdown()
|
|
|
|
|
52 |
|
53 |
+
# Show loading message
|
54 |
+
def show_loading():
|
55 |
+
return "⏳ Loading, please wait..."
|
56 |
|
57 |
+
search_btn.click(fn=show_loading, inputs=[], outputs=output, queue=False)
|
58 |
+
search_btn.click(fn=search_and_summarize, inputs=[topic, sort_by], outputs=output)
|
59 |
|
60 |
+
demo.launch()
|