Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,150 +1,60 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
-
import os
|
4 |
-
from fpdf import FPDF
|
5 |
-
import uuid
|
6 |
-
import re
|
7 |
-
import matplotlib.pyplot as plt
|
8 |
-
import tempfile
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
- Dietary preferences: {preferences}
|
19 |
-
- Ingredients available: {ingredients}
|
20 |
-
- Time available: {time} minutes
|
21 |
-
Tasks:
|
22 |
-
1. Suggest one meal idea
|
23 |
-
2. Provide step-by-step recipe instructions
|
24 |
-
3. List missing ingredients (Shopping List)
|
25 |
-
4. Estimate nutrition (calories, protein, carbs, fat)
|
26 |
-
Output in this format:
|
27 |
-
Meal Name: ...
|
28 |
-
Steps:
|
29 |
-
1. ...
|
30 |
-
2. ...
|
31 |
-
Shopping List:
|
32 |
-
- ...
|
33 |
-
Nutrition:
|
34 |
-
- Calories: ... kcal
|
35 |
-
- Protein: ... g
|
36 |
-
- Carbs: ... g
|
37 |
-
- Fat: ... g
|
38 |
-
"""
|
39 |
headers = {
|
40 |
-
"Authorization": f"
|
41 |
"Content-Type": "application/json"
|
42 |
}
|
|
|
43 |
data = {
|
44 |
-
"modelUri": f"gpt://{FOLDER_ID}/yandexgpt
|
45 |
-
"completionOptions": {
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
}
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
)
|
52 |
try:
|
53 |
-
|
|
|
54 |
except Exception as e:
|
55 |
-
return f"❌ Error:
|
56 |
-
return text
|
57 |
-
|
58 |
-
def extract_nutrition(recipe_text):
|
59 |
-
# More robust pattern allowing newlines and flexible spacing
|
60 |
-
pattern = (
|
61 |
-
r"Calories:\s*([\d\.]+)\s*kcal.*?"
|
62 |
-
r"Protein:\s*([\d\.]+)\s*g.*?"
|
63 |
-
r"Carbs:\s*([\d\.]+)\s*g.*?"
|
64 |
-
r"Fat:\s*([\d\.]+)\s*g"
|
65 |
-
)
|
66 |
-
match = re.search(pattern, recipe_text.replace("\n", " "))
|
67 |
-
if match:
|
68 |
-
calories, protein, carbs, fat = map(float, match.groups())
|
69 |
-
return {"Calories": calories, "Protein": protein, "Carbs": carbs, "Fat": fat}
|
70 |
-
return None
|
71 |
-
|
72 |
-
def plot_nutrition_chart(nutrition):
|
73 |
-
fig, ax = plt.subplots()
|
74 |
-
nutrients = list(nutrition.keys())
|
75 |
-
values = list(nutrition.values())
|
76 |
-
colors = ['#ff9999','#66b3ff','#99ff99','#ffcc99']
|
77 |
-
ax.pie(values, labels=nutrients, autopct='%1.1f%%', startangle=140, colors=colors)
|
78 |
-
ax.axis('equal')
|
79 |
-
plt.tight_layout()
|
80 |
-
|
81 |
-
temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
82 |
-
plt.savefig(temp_file.name)
|
83 |
-
plt.close(fig)
|
84 |
-
return temp_file.name
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
return recipe, chart_path
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
pdf.set_font("Arial", size=12)
|
98 |
-
for line in recipe_text.split('\n'):
|
99 |
-
pdf.multi_cell(0, 10, line)
|
100 |
-
temp_file = tempfile.NamedTemporaryFile(suffix=".pdf", delete=False)
|
101 |
-
pdf.output(temp_file.name)
|
102 |
-
return temp_file.name
|
103 |
-
|
104 |
-
# Optional: placeholder function for speech-to-text (you can replace with real STT)
|
105 |
-
def dummy_speech_to_text(audio):
|
106 |
-
# This just returns a fixed string for demo. Replace with actual STT model call if you want.
|
107 |
-
if audio is None:
|
108 |
-
return ""
|
109 |
-
return "tomato, onion, garlic"
|
110 |
-
|
111 |
-
with gr.Blocks(css="""
|
112 |
-
body { background-color: #111; color: #eee; font-family: 'Segoe UI', sans-serif; }
|
113 |
-
.gradio-container { max-width: 900px; margin: auto; }
|
114 |
-
.input-label { font-weight: 600; margin-bottom: 5px; }
|
115 |
-
.footer { font-size: 0.8rem; color: #666; padding: 10px; text-align: center; }
|
116 |
-
@media (max-width: 600px) {
|
117 |
-
.gradio-container { padding: 10px; }
|
118 |
-
}
|
119 |
-
""") as demo:
|
120 |
-
gr.Markdown("# 👨🍳 AgentChef: AI Recipe Planner & Smart Kitchen Assistant")
|
121 |
|
122 |
with gr.Row():
|
123 |
-
|
124 |
-
|
125 |
-
ingredients = gr.Textbox(label="🧂 Ingredients You Have", placeholder="e.g. rice, tomato, onion", lines=3)
|
126 |
-
|
127 |
-
mic = gr.Audio(type="filepath", label="🎤 Speak Ingredients")
|
128 |
-
|
129 |
-
transcribed = gr.Textbox(label="📝 Transcribed Ingredients (from mic)", interactive=False)
|
130 |
-
|
131 |
-
mic.change(dummy_speech_to_text, inputs=mic, outputs=transcribed)
|
132 |
-
# Add a button to copy transcribed text to ingredients textbox if needed
|
133 |
-
copy_btn = gr.Button("Copy Transcription to Ingredients")
|
134 |
-
copy_btn.click(lambda txt: txt, inputs=transcribed, outputs=ingredients)
|
135 |
-
|
136 |
-
time = gr.Slider(5, 60, value=20, step=5, label="⏱️ Time Available (minutes)")
|
137 |
-
generate_btn = gr.Button("🍽️ Generate Recipe")
|
138 |
-
|
139 |
-
with gr.Column(scale=1, min_width=300):
|
140 |
-
recipe_output = gr.Textbox(label="📝 Recipe Output", lines=15, interactive=False)
|
141 |
-
nutrition_chart = gr.Image(label="📊 Nutrition Breakdown", interactive=False)
|
142 |
-
pdf_btn = gr.Button("📄 Export as PDF")
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
outputs=[recipe_output, nutrition_chart])
|
147 |
|
148 |
-
|
149 |
|
150 |
-
|
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
# Nebius environment variables from Hugging Face secrets
|
6 |
+
FOLDER_ID = os.environ.get("FOLDER_ID")
|
7 |
+
NEBIUS_API_KEY = os.environ.get("NEBIUS_API_KEY")
|
8 |
|
9 |
+
# Function to call Nebius API
|
10 |
+
def call_nebius(prompt):
|
11 |
+
url = "https://llm.api.cloud.yandex.net/foundationModels/v1/completion"
|
12 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
headers = {
|
14 |
+
"Authorization": f"Bearer {NEBIUS_API_KEY}",
|
15 |
"Content-Type": "application/json"
|
16 |
}
|
17 |
+
|
18 |
data = {
|
19 |
+
"modelUri": f"gpt://{FOLDER_ID}/yandexgpt/latest",
|
20 |
+
"completionOptions": {
|
21 |
+
"stream": False,
|
22 |
+
"temperature": 0.7,
|
23 |
+
"maxTokens": 500
|
24 |
+
},
|
25 |
+
"messages": [
|
26 |
+
{"role": "system", "text": "You are a smart kitchen agent. Suggest healthy and delicious recipes."},
|
27 |
+
{"role": "user", "text": prompt}
|
28 |
+
]
|
29 |
}
|
30 |
+
|
31 |
+
response = requests.post(url, headers=headers, json=data)
|
32 |
+
|
|
|
33 |
try:
|
34 |
+
result = response.json()
|
35 |
+
return result["result"]["alternatives"][0]["message"]["text"]
|
36 |
except Exception as e:
|
37 |
+
return f"❌ Error: {e}\n\nResponse: {response.text}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
# Gradio UI logic
|
40 |
+
def generate_recipe(ingredients, preference):
|
41 |
+
if not ingredients:
|
42 |
+
return "⚠️ Please enter some ingredients."
|
43 |
+
prompt = f"Give me a recipe using the following ingredients: {ingredients}. Make it {preference.lower()} and healthy."
|
44 |
+
return call_nebius(prompt)
|
|
|
45 |
|
46 |
+
# UI layout
|
47 |
+
with gr.Blocks(theme=gr.themes.Base()) as demo:
|
48 |
+
gr.Markdown("👨🍳 **AgentChef: AI Recipe Planner & Smart Kitchen Assistant**")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
with gr.Row():
|
51 |
+
ingredients_input = gr.Textbox(label="🛒 Ingredients (comma-separated)", placeholder="e.g. tomato, onion, rice")
|
52 |
+
preference_input = gr.Dropdown(label="🥗 Dietary Preferences", choices=["Vegetarian", "Vegan", "Keto", "No Preference"], value="Vegetarian")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
submit_btn = gr.Button("🍽️ Generate Recipe")
|
55 |
+
output = gr.Textbox(label="📋 Recipe Result", lines=10)
|
|
|
56 |
|
57 |
+
submit_btn.click(generate_recipe, inputs=[ingredients_input, preference_input], outputs=output)
|
58 |
|
59 |
+
# Launch
|
60 |
+
demo.launch()
|