File size: 14,919 Bytes
733fcd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import pandas as pd
import torch
import numpy as np
from transformers import BertTokenizer, BertModel
from ast import literal_eval
import re
import pickle
from datetime import datetime

def clean_text(text):
    #helper function to clean the text from whitespace, double spaces
    # converts to lowercase and checks if the text is a string first to avoid errors
    if not isinstance(text, str):
        return ''
    text = text.lower()
    text = ' '.join(text.split())
    return text.strip()

def setup_tag_categories():
    tag_categories = {
        'cuisine': [
            'italian', 'chinese', 'mexican', 'indian', 'french', 'greek', 'thai', 
            'japanese', 'american', 'european', 'asian', 'mediterranean', 'spanish', 
            'german', 'korean', 'vietnamese', 'turkish', 'moroccan', 'lebanese'
        ],
        'course': [
            'main-dish', 'side-dishes', 'appetizers', 'desserts', 'breakfast', 
            'lunch', 'dinner', 'snacks', 'beverages', 'salads', 'soups'
        ],
        'main_ingredient': [
            'chicken', 'beef', 'pork', 'fish', 'seafood', 'vegetables', 'fruit', 
            'pasta', 'rice', 'cheese', 'chocolate', 'potato', 'lamb', 'turkey',
            'beans', 'nuts', 'eggs', 'tofu'
        ],
        'dietary': [
            'vegetarian', 'vegan', 'gluten-free', 'low-carb', 'healthy', 'low-fat', 
            'diabetic', 'dairy-free', 'keto', 'paleo', 'whole30'
        ],
        'cooking_method': [
            'oven', 'stove-top', 'no-cook', 'microwave', 'slow-cooker', 'grilling', 
            'baking', 'roasting', 'frying', 'steaming', 'braising'
        ],
        'difficulty': ['easy', 'beginner-cook', 'advanced', 'intermediate', 'quick'],
        'time': [
            '15-minutes-or-less', '30-minutes-or-less', '60-minutes-or-less', 
            '4-hours-or-less', 'weeknight'
        ],
        'occasion': [
            'holiday-event', 'christmas', 'thanksgiving', 'valentines-day', 
            'summer', 'winter', 'spring', 'fall', 'party', 'picnic'
        ]
    }
    return tag_categories

def setup_ingredient_groups():
    
    ingredient_groups = {
        'proteins': [
            'chicken', 'beef', 'pork', 'fish', 'salmon', 'tuna', 'shrimp', 'turkey',
            'lamb', 'bacon', 'ham', 'sausage', 'eggs', 'tofu', 'beans', 'lentils'
        ],
        'vegetables': [
            'onion', 'garlic', 'tomato', 'carrot', 'celery', 'pepper', 'mushroom',
            'spinach', 'broccoli', 'zucchini', 'potato', 'sweet potato'
        ],
        'grains_starches': [
            'rice', 'pasta', 'bread', 'flour', 'oats', 'quinoa', 'barley', 'noodles'
        ],
        'dairy': [
            'milk', 'butter', 'cheese', 'cream', 'yogurt', 'sour cream', 'cream cheese'
        ]
    }
    return ingredient_groups

def load_and_clean_recipes(recipes_path):
    print(f"Loading recipes from {recipes_path}")
    
    # Load the CSV file
    recipes_df = pd.read_csv(recipes_path)
    
    # Clean the recipe names
    recipes_df['name'] = recipes_df['name'].fillna('unknown recipe').astype(str).apply(clean_text)
    
    # Update the dataframe
    recipes_df['description'] = recipes_df['description'].fillna('').astype(str).apply(clean_text)
    
    # cleaning tags and ingredients from string format
    recipes_df['tags'] = recipes_df['tags'].apply(literal_eval)
    recipes_df['ingredients'] = recipes_df['ingredients'].apply(literal_eval)
    
    # Filter out recipes with no tags or ingredients
    recipes_df = recipes_df[
        (recipes_df['tags'].str.len() > 0) & 
        (recipes_df['ingredients'].str.len() > 0) & 
        (recipes_df['name'].str.len() > 0) & 
        (recipes_df['name'] != 'unknown recipe')
    ].reset_index(drop=True)
    
    
    print(f"Final number of valid recipes: {len(recipes_df)}")
    return recipes_df

def categorize_recipe_tags(recipe_tags, tag_categories):
    categorized_tags = {}
    
    # Initialize empty lists for each category
    for category_name in tag_categories.keys():
        categorized_tags[category_name] = []
    
    # Check each tag
    for tag in recipe_tags:
        tag_lower = tag.lower()
        
        # Check each category
        for category_name in tag_categories.keys():
            category_keywords = tag_categories[category_name]
            
            # Check if any keyword matches this tag
            for keyword in category_keywords:
                if keyword in tag_lower:
                    categorized_tags[category_name].append(tag)
                    break
    
    return categorized_tags

def extract_main_ingredients(ingredients_list, ingredient_groups):
    if not ingredients_list or not isinstance(ingredients_list, list):
        return []
    
    # Clean each ingredient
    cleaned_ingredients = []
    
    for ingredient in ingredients_list:
        # Convert to string
        ingredient_string = str(ingredient) if ingredient is not None else ''
        if not ingredient_string or ingredient_string == 'nan':
            continue
        
        # Make lowercase
        cleaned_ingredient = ingredient_string.lower()
        
        # Remove common descriptor words
        words_to_remove = ['fresh', 'dried', 'chopped', 'minced', 'sliced', 'diced', 'ground', 'large', 'small', 'medium']
        for word in words_to_remove:
            cleaned_ingredient = cleaned_ingredient.replace(word, '')
        
        # Remove numbers
        cleaned_ingredient = re.sub(r'\d+', '', cleaned_ingredient)
        
        # Remove measurement words
        measurement_words = ['cup', 'cups', 'tablespoon', 'tablespoons', 'teaspoon', 'teaspoons', 'pound', 'pounds', 'ounce', 'ounces']
        for measurement in measurement_words:
            cleaned_ingredient = cleaned_ingredient.replace(measurement, '')
        
        # Clean up extra spaces
        cleaned_ingredient = re.sub(r'\s+', ' ', cleaned_ingredient).strip()
        
        # Only keep if it's long enough
        if cleaned_ingredient and len(cleaned_ingredient) > 2:
            cleaned_ingredients.append(cleaned_ingredient)

    
    # Put ingredients in order of importance
    ordered_ingredients = []
    
    # First, add proteins (most important)
    for ingredient in cleaned_ingredients:
        for protein in ingredient_groups['proteins']:
            if protein in ingredient:
                ordered_ingredients.append(ingredient)
                break
        
    
    # Then add vegetables, grains, and dairy
    other_groups = ['vegetables', 'grains_starches', 'dairy']
    for group_name in other_groups:
        for ingredient in cleaned_ingredients:
            if ingredient not in ordered_ingredients:
                for group_item in ingredient_groups[group_name]:
                    if group_item in ingredient:
                        ordered_ingredients.append(ingredient)
                        break
    
    # Finally, add any remaining ingredients
    for ingredient in cleaned_ingredients:
        if ingredient not in ordered_ingredients:
            ordered_ingredients.append(ingredient)
    
    return ordered_ingredients

def create_structured_recipe_text(recipe, tag_categories, ingredient_groups):
    # Get recipe tags and categorize them
    recipe_tags = recipe['tags'] if isinstance(recipe['tags'], list) else []
    categorized_tags = categorize_recipe_tags(recipe_tags, tag_categories)
    
    # Choose tags in priority order
    priority_categories = ['main_ingredient', 'cuisine', 'course', 'dietary', 'cooking_method']
    selected_tags = []
    
    for category in priority_categories:
        if category in categorized_tags:
            # Take up to 2 tags from each category
            category_tags = categorized_tags[category][:2]
            for tag in category_tags:
                selected_tags.append(tag)
    
    # Add some additional important tags
    important_keywords = ['easy', 'quick', 'healthy', 'spicy', 'sweet']
    remaining_tags = []
    
    for tag in recipe_tags:
        if tag not in selected_tags:  
            for keyword in important_keywords:
                if keyword in tag.lower():
                    remaining_tags.append(tag)
                    break
            
    
    # Add up to 3 remaining tags
    for i in range(min(3, len(remaining_tags))):
        selected_tags.append(remaining_tags[i])
    
    # Process ingredients
    recipe_ingredients = recipe['ingredients'] if isinstance(recipe['ingredients'], list) else []
    main_ingredients = extract_main_ingredients(recipe_ingredients, ingredient_groups)
    
    # Step 5: Create the final structured text
    # Join first 8 ingredients
    ingredients_text = ', '.join(main_ingredients[:8])
    
    # Join first 10 tags
    tags_text = ', '.join(selected_tags[:10])
    
    # Get recipe name
    recipe_name = str(recipe['name']).replace('  ', ' ').strip()
    
    # Create final structured text
    structured_text = f"Recipe: {recipe_name}. Ingredients: {ingredients_text}. Style: {tags_text}"
    
    return structured_text
        

def create_recipe_statistics(interactions_path='RAW_interactions.csv'):
    print("Creating recipe statistics")
        
    # Load interactions data
    interactions_df = pd.read_csv(interactions_path)    
    # Clean interactions data    
    interactions_df = interactions_df.dropna(subset=['rating'])
    # Convert ratings to numbers
    interactions_df['rating'] = pd.to_numeric(interactions_df['rating'], errors='coerce')
    
    # Remove rows where rating conversion failed
    interactions_df = interactions_df.dropna(subset=['rating'])
    
    print(f"Valid interactions after cleaning: {len(interactions_df)}")
    
    # Calculate statistics for each recipe
    recipe_stats = {}
    unique_recipe_ids = interactions_df['recipe_id'].unique()
    
    for recipe_id in unique_recipe_ids:
        # Get all interactions for this recipe
        recipe_interactions = interactions_df[interactions_df['recipe_id'] == recipe_id]
        # Calculate average rating
        ratings_list = recipe_interactions['rating'].tolist()
        average_rating = sum(ratings_list) / len(ratings_list)
        # Count number of ratings
        number_of_ratings = len(recipe_interactions)
        # Count unique users
        unique_users = recipe_interactions['user_id'].nunique()
        
        recipe_stats[recipe_id] = (average_rating, number_of_ratings, unique_users)
    
    print(f"Created statistics for {len(recipe_stats)} recipes")
    return recipe_stats

def create_recipe_embeddings(recipes_df, model, tokenizer, device, tag_categories, ingredient_groups):
    print("Creating recipe embeddings (this will take a long time)")
    
    recipe_embeddings_list = []
    valid_recipes_list = []
    
    # Process each recipe one by one
    for i in range(len(recipes_df)):
        recipe = recipes_df.iloc[i]
        
        try:
            # Create structured text for this recipe
            recipe_text = create_structured_recipe_text(recipe, tag_categories, ingredient_groups)
            
            # Tokenize the recipe text
            tokenized_input = tokenizer(
                recipe_text,
                return_tensors='pt',
                truncation=True,
                max_length=128,
                padding='max_length'
            )
            
            
            # Get embedding from model
            with torch.no_grad():
                tokenized_input = tokenized_input['input_ids'].to(device)
                tokenized_mask = tokenized_input['attention_mask'].to(device)
                model_outputs = model(tokenized_input, tokenized_mask)
                # Get CLS token embedding (first token)
                cls_embedding = model_outputs.last_hidden_state[:, 0, :]
                # Move to CPU and convert to numpy
                embedding_numpy = cls_embedding.cpu().numpy().flatten()
            
            # Store the embedding and recipe
            recipe_embeddings_list.append(embedding_numpy)
            valid_recipes_list.append(recipe.copy())
            
            # Show progress every 1000 recipes
            if len(recipe_embeddings_list) % 1000 == 0:
                print(f"Processed {len(recipe_embeddings_list)} recipes")
                
        except Exception as e:
            print(f"Error processing recipe {recipe.get('id', i)}: {e}")
            continue
        
    # Convert list to numpy array
    embeddings_array = np.array(recipe_embeddings_list)
    
    # Create new dataframe with only valid recipes
    valid_recipes_df = pd.DataFrame(valid_recipes_list)
    valid_recipes_df = valid_recipes_df.reset_index(drop=True)
    
    print(f"Created {len(embeddings_array)} recipe embeddings")
    return embeddings_array, valid_recipes_df

def save_all_files(recipes_df, recipe_embeddings, recipe_stats):
    print("Saving all files...")
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    np.save(f'recipe_embeddings_{timestamp}.npy', recipe_embeddings)
    print(f"Saved embeddings")
    
    # Save filtered recipes dataframe
    with open(f'filtered_recipes_{timestamp}.pkl', 'wb') as f:
        pickle.dump(recipes_df, f)
    print(f"Saved recipes.")
    
    # Save recipe statistics
    with open(f'recipe_statistics_{timestamp}.pkl', 'wb') as f:
        pickle.dump(recipe_stats, f)
    print(f"Saved statistics")
    
    print("All files saved successfully!")

def create_all_necessary_files(recipes_path, interactions_path, model_path):
    print("Starting full preprocessing pipeline")
    
    # Set up device
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print(f"Using device: {device}")
    
    # Load tokenizer
    tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
    
    # Load the trained model
    model = BertModel.from_pretrained('bert-base-uncased')
    model.load_state_dict(torch.load(model_path, map_location=device))
    model.to(device)
    model.eval()
    
    # Set up tag categories and ingredient groups
    tag_categories = setup_tag_categories()
    ingredient_groups = setup_ingredient_groups()
    
    # Load and clean recipes
    recipes_df = load_and_clean_recipes(recipes_path)
    
    # Create recipe statistics
    recipe_stats = create_recipe_statistics(interactions_path)
    
    # Create recipe embeddings
    recipe_embeddings, filtered_recipes_df = create_recipe_embeddings(
        recipes_df, model, tokenizer, device, tag_categories, ingredient_groups
    )
    
    # Save all files
    save_all_files(filtered_recipes_df, recipe_embeddings, recipe_stats)

if __name__ == "__main__":
    create_all_necessary_files(
        recipes_path='RAW_recipes.csv',
        interactions_path='RAW_interactions.csv',
        model_path='tag_based_bert_model.pth'
    )
    
    print("All preprocessing complete! You can now use the search system.")