Spaces:
Sleeping
Sleeping
File size: 8,627 Bytes
733fcd8 a306fec 733fcd8 a306fec 733fcd8 a306fec 733fcd8 a306fec 733fcd8 a306fec 733fcd8 a306fec 733fcd8 a306fec 733fcd8 a306fec 733fcd8 a306fec 733fcd8 a306fec 733fcd8 a306fec 733fcd8 a306fec 733fcd8 a306fec 733fcd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import streamlit as st
def render_report():
st.title("Group 5: Term Project Report")
# Title Page Information
st.markdown("""
**Course:** CSE 555 β Introduction to Pattern Recognition
**Authors:** Saksham Lakhera and Ahmed Zaher
**Date:** July 2025
""")
# Abstract
st.header("Abstract")
st.subheader("NLP Engineering Perspective")
st.markdown("""
This project addresses the challenge of improving recipe recommendation systems through
advanced semantic search capabilities using transformer-based language models. Traditional
keyword-based search methods often fail to capture the nuanced relationships between
ingredients, cooking techniques, and user preferences in culinary contexts.
Our approach leverages BERT (Bidirectional Encoder Representations from Transformers)
fine-tuning on a custom recipe dataset to develop a semantic understanding of culinary content.
We preprocessed and structured a subset of 15,000 recipes into standardized sequences organized
by food categories (proteins, vegetables, legumes, etc.) to create training data optimized for
the BERT architecture.
The model was fine-tuned to learn contextual embeddings that capture semantic relationships
between ingredients and tags. At inference time we generate embeddings for all recipes in our
dataset and perform cosine-similarity retrieval to produce the top-K most relevant recipes
for a user query.
""")
# Introduction
st.header("Introduction")
st.markdown("""
This term project serves primarily as an educational exercise aimed at giving students
end-to-end exposure to building a modern NLP system. Our goal is to construct a semantic
recipe-search engine that demonstrates how domain-specific fine-tuning of BERT can
substantially improve retrieval quality over simple keyword matching.
**Key Contributions:**
- A cleaned, category-labelled recipe subset of 15,000 recipes
- Training scripts that yield domain-adapted contextual embeddings
- A production-ready retrieval service that returns top-K most relevant recipes
- Comparative evaluation against classical baselines
""")
# Dataset and Preprocessing
st.header("Dataset and Pre-processing")
st.subheader("Data Sources")
st.markdown("""
The project draws from two CSV files:
- **Raw_recipes.csv** β 231,637 rows, one per recipe with columns: *id, name, ingredients, tags, minutes, steps, description, n_steps, n_ingredients*
- **Raw_interactions.csv** β user feedback containing *recipe_id, user_id, rating (1-5), review text*
""")
st.subheader("Corpus Filtering and Subset Selection")
st.markdown("""
1. **Invalid rows removed** β recipes with empty ingredient lists, missing tags, or fewer than three total tags
2. **Random sampling** β 15,000 recipes selected for NLP fine-tuning
3. **Positive/negative pairs** β generated for contrastive learning using ratings and tag similarity
4. **Train/test split** β 80/20 stratified split (12,000/3,000 pairs)
""")
st.subheader("Text Pre-processing Pipeline")
st.markdown("""
- **Lower-casing & punctuation removal** β normalized to lowercase, special characters stripped
- **Stop-descriptor removal** β culinary modifiers (*fresh, chopped, minced*) and measurements removed
- **Ingredient ordering** β re-ordered into sequence: **protein β vegetables β grains β dairy β other**
- **Tag normalization** β mapped to six canonical slots: *cuisine, course, main-ingredient, dietary, difficulty, occasion*
- **Tokenization** β standard *bert-base-uncased* WordPiece tokenizer, sequences truncated/padded to 128 tokens
""")
# Methodology
st.header("Methodology")
st.subheader("Model Architecture")
st.markdown("""
- **Base Model:** `bert-base-uncased` checkpoint
- **Additional Layers:** Single linear classification layer (768 β 1) with dropout (p = 0.1)
- **Training Objective:** Triplet-margin loss with margin of 1.0
""")
st.subheader("Hyperparameters")
col1, col2 = st.columns(2)
with col1:
st.markdown("""
- **Batch size:** 8
- **Max sequence length:** 128 tokens
- **Learning rate:** 2 Γ 10β»β΅
- **Weight decay:** 0.01
""")
with col2:
st.markdown("""
- **Optimizer:** AdamW
- **Epochs:** 3
- **Hardware:** Google Colab A100 GPU (40 GB VRAM)
- **Training time:** ~75 minutes per run
""")
# Mathematical Formulations
st.header("Mathematical Formulations")
st.subheader("Query Embedding and Similarity Calculation")
st.latex(r"""
\text{Similarity}(q, r_i) = \cos(\hat{q}, \hat{r}_i) = \frac{\hat{q} \cdot \hat{r}_i}{\|\hat{q}\|\|\hat{r}_i\|}
""")
st.markdown("Where $\\hat{q}$ is the BERT embedding of the query, and $\\hat{r}_i$ is the embedding of the i-th recipe.")
st.subheader("Final Score Calculation")
st.latex(r"""
\text{Score}_i = 0.6 \times \text{Similarity}_i + 0.4 \times \text{Popularity}_i
""")
# Results
st.header("Results")
st.subheader("Training and Validation Loss")
results_data = {
"Run": [1, 2, 3, 4],
"Configuration": [
"Raw, no cleaning/ordering",
"Cleaned text, unordered",
"Cleaned text + dropout",
"Cleaned text + dropout + ordering"
],
"Epoch-3 Train Loss": [0.0065, 0.0023, 0.0061, 0.0119],
"Validation Loss": [0.1100, 0.0000, 0.0118, 0.0067]
}
st.table(results_data)
st.markdown("""
**Key Finding:** Run 4 (cleaned text + dropout + ordering) achieved the best balance
between low validation loss and meaningful retrieval quality.
""")
st.subheader("Qualitative Retrieval Examples")
st.markdown("""
**Query: "beef steak dinner"**
- Run 1 (Raw): *to die for crock pot roast*, *crock pot chicken with black beans*
- Run 4 (Final): *grilled garlic steak dinner*, *classic beef steak au poivre*
**Query: "chicken italian pasta"**
- Run 1 (Raw): *to die for crock pot roast*, *crock pot chicken with black beans*
- Run 4 (Final): *creamy tuscan chicken pasta*, *italian chicken penne bake*
**Query: "vegetarian salad healthy"**
- Run 1 (Raw): (irrelevant hits)
- Run 4 (Final): *kale quinoa power salad*, *superfood spinach & berry salad*
""")
# Discussion and Conclusion
st.header("Discussion and Conclusion")
st.markdown("""
The experimental evidence underscores the importance of disciplined pre-processing when
adapting large language models to niche domains. The breakthrough came with **ingredient-ordering**
(protein β vegetables β grains β dairy β other) which supplied consistent positional signals.
**Key Achievements:**
- End-to-end recipe recommendation system with semantic search
- Sub-second latency across 231k recipes
- Meaningful semantic understanding of culinary content
- Reproducible blueprint for domain-specific NLP applications
**Limitations:**
- Private dataset relatively small (15k samples) compared to public corpora
- Minimal hyperparameter search conducted
- Single-machine deployment tested
""")
# Technical Specifications
st.header("Technical Specifications")
col1, col2 = st.columns(2)
with col1:
st.markdown("""
**Dataset:**
- Total Recipes: 231,630
- Training Set: 15,000 recipes
- Average Tags per Recipe: ~6
- Ingredients per Recipe: 3-20
""")
with col2:
st.markdown("""
**Infrastructure:**
- Python 3.10
- PyTorch 2.1 (CUDA 11.8)
- Transformers 4.38
- Google Colab A100 GPU
""")
# References
st.header("References")
st.markdown("""
[1] Vaswani et al., "Attention Is All You Need," NeurIPS, 2017.
[2] Devlin et al., "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding," NAACL-HLT, 2019.
[3] Reimers and Gurevych, "Sentence-BERT: Sentence Embeddings Using Siamese BERT-Networks," EMNLP-IJCNLP, 2019.
[4] Hugging Face, "BERT Model Documentation," 2024.
""")
st.markdown("---")
st.markdown("Β© 2025 CSE 555 Term Project. All rights reserved.")
# Render the report
render_report()
|