Spaces:
Sleeping
Sleeping
File size: 1,383 Bytes
733fcd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import torch
import torch.nn as nn
from typing import Tuple, List
from torchvision import models, transforms
from PIL import Image
from config import CLASS_LABELS, MODEL_PATH
import torch.nn.functional as F
def get_model():
model = models.efficientnet_b0(weights=models.EfficientNet_B0_Weights.DEFAULT)
model.classifier[1] = nn.Linear(model.classifier[1].in_features, len(CLASS_LABELS))
model.load_state_dict(torch.load(MODEL_PATH, map_location=torch.device('cpu')))
model.eval()
return model
def get_model_by_name(model_path: str, num_classes: int):
model = models.efficientnet_b0(weights=None)
model.classifier[1] = nn.Linear(model.classifier[1].in_features, num_classes)
model.load_state_dict(torch.load(model_path, map_location='cpu'))
model.eval()
return model
def predict(image: Image.Image, model, class_labels: List[str] = None) -> Tuple[str, float]:
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor()
])
image_tensor = transform(image).unsqueeze(0)
with torch.no_grad():
output = model(image_tensor)
probabilities = F.softmax(output, dim=1)
confidence, pred = torch.max(probabilities, dim=1)
print(pred)
if class_labels is None:
class_labels = CLASS_LABELS
return class_labels[pred.item()], confidence.item()
|