File size: 9,547 Bytes
733fcd8
 
 
 
 
82b68ff
 
 
 
 
 
 
733fcd8
 
82b68ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
733fcd8
82b68ff
 
 
 
 
 
 
 
733fcd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5f9fcc
733fcd8
 
 
 
 
 
 
 
 
 
b5f9fcc
733fcd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5f9fcc
733fcd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5f9fcc
733fcd8
 
 
 
 
 
 
 
 
 
 
 
 
82b68ff
 
733fcd8
 
 
 
 
 
 
 
 
 
05b9293
733fcd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import torch
import numpy as np
from transformers import BertTokenizer, BertModel
import pickle
import json
import gdown
import os
import sys
sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..'))
from config import GOOGLE_DRIVE_FILES


class RecipeSearchSystem:
    
    def __init__(self, max_recipes=231630):
        try:
            # Load all the preprocessed files
            self.max_recipes = max_recipes
            file_paths = {
                'recipe_embeddings': GOOGLE_DRIVE_FILES['assets/nlp/advanced_recipe_embeddings_231630.npy'],
                'recipes_df': GOOGLE_DRIVE_FILES['assets/nlp/advanced_filtered_recipes_231630.pkl'],
                'recipe_stats': GOOGLE_DRIVE_FILES['assets/nlp/recipe_statistics_231630.pkl'],
                'model': GOOGLE_DRIVE_FILES['assets/nlp/tag_based_bert_model.pth']
                }
            output_path = "assets/nlp/"
            #download files from google drive
            self.ensure_files_exist(file_paths, output_path)
            # Set up device
            self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
            
            # Load tokenizer
            self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
            
            # Load the trained model
            self.model = BertModel.from_pretrained('bert-base-uncased')
            self.model.load_state_dict(torch.load(f'{output_path}tag_based_bert_model.pth', map_location=self.device))
            
            self.model.to(self.device)
            self.model.eval()
            
            #load recipe embeddings
            self.recipe_embeddings = np.load(f'{output_path}advanced_recipe_embeddings_{self.max_recipes}.npy')
            #load recipes dataframe
            with open(f'{output_path}advanced_filtered_recipes_{self.max_recipes}.pkl', 'rb') as f:
                self.recipes_df = pickle.load(f)
            #load recipe statistics
            with open(f'{output_path}recipe_statistics_{self.max_recipes}.pkl', 'rb') as f:
                self.recipe_stats = pickle.load(f)
            self.is_ready = True
        except Exception as e:
            print(f"Error initializing search system: {e}")
            self.is_ready = False
    
    def ensure_files_exist(self, file_paths, output_path):
        # Create output directory if it doesn't exist
        os.makedirs(output_path, exist_ok=True)
        
        file_mapping = {
            'recipe_embeddings': f'advanced_recipe_embeddings_{self.max_recipes}.npy',
            'recipes_df': f'advanced_filtered_recipes_{self.max_recipes}.pkl',
            'recipe_stats': f'recipe_statistics_{self.max_recipes}.pkl',
            'model': f'tag_based_bert_model.pth'
        }
        
        for key, local_filename in file_mapping.items():
            local_path = os.path.join(output_path, local_filename)
            if not os.path.exists(local_path):
                print(f"Downloading {local_filename}...")
                gdown.download(file_paths[key], local_path, quiet=False, fuzzy=True)
                print(f"Downloaded {local_filename}")
            else:
                print(f"{local_filename} already exists, skipping download")
    
    def create_query_embedding(self, user_query):
        
        structured_query = f"anchor: {user_query.lower()}"
        
        # Tokenize the query
        tokenized_query = self.tokenizer(
            structured_query,
            return_tensors='pt',
            truncation=True,
            max_length=128,
            padding='max_length'
        )
        
        # Move to device
        tokenized_query = tokenized_query.to(self.device)
        
        # Get embedding from model
        with torch.no_grad():
            anchor_input_ids = tokenized_query['input_ids'].to(self.device)
            anchor_attention_mask = tokenized_query['attention_mask'].to(self.device)
            anchor_outputs = self.model(anchor_input_ids, anchor_attention_mask)
            # Get CLS token embedding
            anchor_embedding = anchor_outputs.last_hidden_state[:, 0, :]
            # Move to CPU and convert to numpy
            query_embedding_numpy = anchor_embedding.cpu().numpy().flatten()
        
        return query_embedding_numpy
    
    def calculate_similarities(self, query_embedding):
        similarities = []
        
        # Calculate cosine similarity for each recipe
        for i in range(len(self.recipe_embeddings)):
            recipe_embedding = self.recipe_embeddings[i]
            
            # Calculate cosine similarity
            #Cosine Similarity = (a · b) / (||a|| * ||b||)
            dot_product = np.dot(recipe_embedding, query_embedding)
            recipe_norm = np.linalg.norm(recipe_embedding)
            query_norm = np.linalg.norm(query_embedding)
            
            # Avoid division by zero
            if recipe_norm > 0 and query_norm > 0:
                similarity = dot_product / (recipe_norm * query_norm)
            else:
                similarity = 0.0
            
            similarities.append(similarity)
        
        return similarities
    
    def filter_recipes_by_quality(self, min_rating=3.0, min_num_ratings=5):
        #Get all indexes for recipes that meet the quality criteria the user chose
        filtered_recipe_indices = []
        
        for i in range(len(self.recipes_df)):
            recipe = self.recipes_df.iloc[i]
            recipe_id = recipe['id']
            
            if recipe_id in self.recipe_stats:
                avg_rating, num_ratings, _ = self.recipe_stats[recipe_id]
                
                if avg_rating >= min_rating and num_ratings >= min_num_ratings:
                    filtered_recipe_indices.append(i)
        
        return filtered_recipe_indices
    
    def rank_recipes_by_similarity_and_rating(self, similarities, recipe_indices):
        recipe_scores = []
        
        for recipe_index in recipe_indices:
            recipe = self.recipes_df.iloc[recipe_index]
            recipe_id = recipe['id']
            
            similarity_score = similarities[recipe_index]
            
            #if the recipe has no ratings we will assume it is a bad recipe to choose and set the ratio to 1.0
            if recipe_id in self.recipe_stats:
                avg_rating, _, _ = self.recipe_stats[recipe_id]
            else:
                avg_rating = 1.0  
            
            recipe_scores.append({
                'recipe_index': recipe_index,
                'recipe_id': recipe_id,
                'similarity_score': similarity_score,
                'avg_rating': avg_rating
            })
        
        return recipe_scores
    
    def create_recipe_result(self, recipe_index, scores_info):
        recipe = self.recipes_df.iloc[recipe_index]
        recipe_id = recipe['id']
        

        avg_rating, num_ratings, unique_users = self.recipe_stats[recipe_id]

        
        # Create result structure mapping
        result = {
            'recipe_id': int(recipe_id),
            'name': recipe['name'],
            'ingredients': recipe['ingredients'],
            'tags': recipe['tags'],
            'minutes': int(recipe['minutes']),
            'n_steps': int(recipe['n_steps']),
            'description': recipe.get('description', ''),
            'similarity_score': float(scores_info['similarity_score']),
            'avg_rating': float(avg_rating),
            'num_ratings': int(num_ratings),
            'unique_users': int(unique_users)
        }
        
        return result
    
    def search_recipes(self, user_query, top_k=5, min_rating=3.0, min_num_ratings=5):
                
        # Create embedding for user query
        query_embedding = self.create_query_embedding(user_query)
        
        # Calculate similarities between query and all recipes
        similarities = self.calculate_similarities(query_embedding)
        
        # Filter recipes by quality
        filtered_recipe_indices = self.filter_recipes_by_quality(min_rating, min_num_ratings)
        
        # Rank by semantic similarity and rating
        recipe_scores = self.rank_recipes_by_similarity_and_rating(similarities, filtered_recipe_indices)
        
        # Sort by semantic similarity, then by average rating
        recipe_scores.sort(key=lambda x: (x['similarity_score'], x['avg_rating']), reverse=True)
        
        # Get top results
        top_results = recipe_scores[:top_k]
        
        # Create result dictionaries
        final_results = []
        for score_info in top_results:
            recipe_result = self.create_recipe_result(score_info['recipe_index'], score_info)
            final_results.append(recipe_result)
        
        return final_results


def search_for_recipes():
    return RecipeSearchSystem()


if __name__ == "__main__":
    
    search_system = RecipeSearchSystem()
    test_queries = [
        # "chicken pasta italian quick dinner",
        # "chocolate cake dessert brownie baked healthy",
        # "healthy vegetarian salad tomato basil",
        # "quick easy dinner",
        "beef steak",
        "beef pasta",
        "beef"
    ]
    
    for query in test_queries:
        print(f"Testing query: '{query}'")
        
        results = search_system.search_recipes(
            user_query=query,
            top_k=3,
            min_rating=3.5,
            min_num_ratings=10
        )
        
        print (results)
    print("Recipe search system testing complete!")