Spaces:
Sleeping
Sleeping
File size: 9,547 Bytes
733fcd8 82b68ff 733fcd8 82b68ff 733fcd8 82b68ff 733fcd8 b5f9fcc 733fcd8 b5f9fcc 733fcd8 b5f9fcc 733fcd8 b5f9fcc 733fcd8 82b68ff 733fcd8 05b9293 733fcd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import torch
import numpy as np
from transformers import BertTokenizer, BertModel
import pickle
import json
import gdown
import os
import sys
sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..'))
from config import GOOGLE_DRIVE_FILES
class RecipeSearchSystem:
def __init__(self, max_recipes=231630):
try:
# Load all the preprocessed files
self.max_recipes = max_recipes
file_paths = {
'recipe_embeddings': GOOGLE_DRIVE_FILES['assets/nlp/advanced_recipe_embeddings_231630.npy'],
'recipes_df': GOOGLE_DRIVE_FILES['assets/nlp/advanced_filtered_recipes_231630.pkl'],
'recipe_stats': GOOGLE_DRIVE_FILES['assets/nlp/recipe_statistics_231630.pkl'],
'model': GOOGLE_DRIVE_FILES['assets/nlp/tag_based_bert_model.pth']
}
output_path = "assets/nlp/"
#download files from google drive
self.ensure_files_exist(file_paths, output_path)
# Set up device
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load tokenizer
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
# Load the trained model
self.model = BertModel.from_pretrained('bert-base-uncased')
self.model.load_state_dict(torch.load(f'{output_path}tag_based_bert_model.pth', map_location=self.device))
self.model.to(self.device)
self.model.eval()
#load recipe embeddings
self.recipe_embeddings = np.load(f'{output_path}advanced_recipe_embeddings_{self.max_recipes}.npy')
#load recipes dataframe
with open(f'{output_path}advanced_filtered_recipes_{self.max_recipes}.pkl', 'rb') as f:
self.recipes_df = pickle.load(f)
#load recipe statistics
with open(f'{output_path}recipe_statistics_{self.max_recipes}.pkl', 'rb') as f:
self.recipe_stats = pickle.load(f)
self.is_ready = True
except Exception as e:
print(f"Error initializing search system: {e}")
self.is_ready = False
def ensure_files_exist(self, file_paths, output_path):
# Create output directory if it doesn't exist
os.makedirs(output_path, exist_ok=True)
file_mapping = {
'recipe_embeddings': f'advanced_recipe_embeddings_{self.max_recipes}.npy',
'recipes_df': f'advanced_filtered_recipes_{self.max_recipes}.pkl',
'recipe_stats': f'recipe_statistics_{self.max_recipes}.pkl',
'model': f'tag_based_bert_model.pth'
}
for key, local_filename in file_mapping.items():
local_path = os.path.join(output_path, local_filename)
if not os.path.exists(local_path):
print(f"Downloading {local_filename}...")
gdown.download(file_paths[key], local_path, quiet=False, fuzzy=True)
print(f"Downloaded {local_filename}")
else:
print(f"{local_filename} already exists, skipping download")
def create_query_embedding(self, user_query):
structured_query = f"anchor: {user_query.lower()}"
# Tokenize the query
tokenized_query = self.tokenizer(
structured_query,
return_tensors='pt',
truncation=True,
max_length=128,
padding='max_length'
)
# Move to device
tokenized_query = tokenized_query.to(self.device)
# Get embedding from model
with torch.no_grad():
anchor_input_ids = tokenized_query['input_ids'].to(self.device)
anchor_attention_mask = tokenized_query['attention_mask'].to(self.device)
anchor_outputs = self.model(anchor_input_ids, anchor_attention_mask)
# Get CLS token embedding
anchor_embedding = anchor_outputs.last_hidden_state[:, 0, :]
# Move to CPU and convert to numpy
query_embedding_numpy = anchor_embedding.cpu().numpy().flatten()
return query_embedding_numpy
def calculate_similarities(self, query_embedding):
similarities = []
# Calculate cosine similarity for each recipe
for i in range(len(self.recipe_embeddings)):
recipe_embedding = self.recipe_embeddings[i]
# Calculate cosine similarity
#Cosine Similarity = (a · b) / (||a|| * ||b||)
dot_product = np.dot(recipe_embedding, query_embedding)
recipe_norm = np.linalg.norm(recipe_embedding)
query_norm = np.linalg.norm(query_embedding)
# Avoid division by zero
if recipe_norm > 0 and query_norm > 0:
similarity = dot_product / (recipe_norm * query_norm)
else:
similarity = 0.0
similarities.append(similarity)
return similarities
def filter_recipes_by_quality(self, min_rating=3.0, min_num_ratings=5):
#Get all indexes for recipes that meet the quality criteria the user chose
filtered_recipe_indices = []
for i in range(len(self.recipes_df)):
recipe = self.recipes_df.iloc[i]
recipe_id = recipe['id']
if recipe_id in self.recipe_stats:
avg_rating, num_ratings, _ = self.recipe_stats[recipe_id]
if avg_rating >= min_rating and num_ratings >= min_num_ratings:
filtered_recipe_indices.append(i)
return filtered_recipe_indices
def rank_recipes_by_similarity_and_rating(self, similarities, recipe_indices):
recipe_scores = []
for recipe_index in recipe_indices:
recipe = self.recipes_df.iloc[recipe_index]
recipe_id = recipe['id']
similarity_score = similarities[recipe_index]
#if the recipe has no ratings we will assume it is a bad recipe to choose and set the ratio to 1.0
if recipe_id in self.recipe_stats:
avg_rating, _, _ = self.recipe_stats[recipe_id]
else:
avg_rating = 1.0
recipe_scores.append({
'recipe_index': recipe_index,
'recipe_id': recipe_id,
'similarity_score': similarity_score,
'avg_rating': avg_rating
})
return recipe_scores
def create_recipe_result(self, recipe_index, scores_info):
recipe = self.recipes_df.iloc[recipe_index]
recipe_id = recipe['id']
avg_rating, num_ratings, unique_users = self.recipe_stats[recipe_id]
# Create result structure mapping
result = {
'recipe_id': int(recipe_id),
'name': recipe['name'],
'ingredients': recipe['ingredients'],
'tags': recipe['tags'],
'minutes': int(recipe['minutes']),
'n_steps': int(recipe['n_steps']),
'description': recipe.get('description', ''),
'similarity_score': float(scores_info['similarity_score']),
'avg_rating': float(avg_rating),
'num_ratings': int(num_ratings),
'unique_users': int(unique_users)
}
return result
def search_recipes(self, user_query, top_k=5, min_rating=3.0, min_num_ratings=5):
# Create embedding for user query
query_embedding = self.create_query_embedding(user_query)
# Calculate similarities between query and all recipes
similarities = self.calculate_similarities(query_embedding)
# Filter recipes by quality
filtered_recipe_indices = self.filter_recipes_by_quality(min_rating, min_num_ratings)
# Rank by semantic similarity and rating
recipe_scores = self.rank_recipes_by_similarity_and_rating(similarities, filtered_recipe_indices)
# Sort by semantic similarity, then by average rating
recipe_scores.sort(key=lambda x: (x['similarity_score'], x['avg_rating']), reverse=True)
# Get top results
top_results = recipe_scores[:top_k]
# Create result dictionaries
final_results = []
for score_info in top_results:
recipe_result = self.create_recipe_result(score_info['recipe_index'], score_info)
final_results.append(recipe_result)
return final_results
def search_for_recipes():
return RecipeSearchSystem()
if __name__ == "__main__":
search_system = RecipeSearchSystem()
test_queries = [
# "chicken pasta italian quick dinner",
# "chocolate cake dessert brownie baked healthy",
# "healthy vegetarian salad tomato basil",
# "quick easy dinner",
"beef steak",
"beef pasta",
"beef"
]
for query in test_queries:
print(f"Testing query: '{query}'")
results = search_system.search_recipes(
user_query=query,
top_k=3,
min_rating=3.5,
min_num_ratings=10
)
print (results)
print("Recipe search system testing complete!") |