Spaces:
Sleeping
Sleeping
sakshamlakhera
commited on
Commit
Β·
085c988
1
Parent(s):
04cc6b0
home page combined
Browse files- Home.py +162 -21
- src/streamlit_app.py +0 -40
Home.py
CHANGED
@@ -1,22 +1,163 @@
|
|
1 |
import streamlit as st
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
from model.classifier import get_model, predict
|
4 |
+
from model.search_script import search_for_recipes
|
5 |
+
import streamlit.components.v1 as components
|
6 |
+
import time
|
7 |
+
import base64
|
8 |
+
|
9 |
+
from utils.layout import render_layout
|
10 |
+
|
11 |
+
@st.cache_resource
|
12 |
+
def load_model():
|
13 |
+
return get_model()
|
14 |
+
|
15 |
+
def classification_and_recommendation_page():
|
16 |
+
st.markdown("## πΌοΈ Task A: Image Classification + π½οΈ Recipe Recommendation")
|
17 |
+
|
18 |
+
st.markdown("""
|
19 |
+
<div class="about-box">
|
20 |
+
Upload one or more food images. This module classifies each image into
|
21 |
+
<b>Onion, Pear, Strawberry, or Tomato</b> using EfficientNet-B0, and then recommends recipes
|
22 |
+
based on the combined classification results.
|
23 |
+
</div>
|
24 |
+
""", unsafe_allow_html=True)
|
25 |
+
|
26 |
+
model = load_model()
|
27 |
+
|
28 |
+
# --- Upload and classify ---
|
29 |
+
uploaded_files = st.file_uploader("π€ Upload images (JPG/PNG)", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
|
30 |
+
|
31 |
+
if "uploaded_images" not in st.session_state:
|
32 |
+
st.session_state.uploaded_images = []
|
33 |
+
if "image_tags" not in st.session_state:
|
34 |
+
st.session_state.image_tags = {}
|
35 |
+
|
36 |
+
if uploaded_files:
|
37 |
+
for img_file in uploaded_files:
|
38 |
+
if img_file.name not in [img.name for img in st.session_state.uploaded_images]:
|
39 |
+
img = Image.open(img_file).convert("RGB")
|
40 |
+
label, _ = predict(img, model)
|
41 |
+
st.session_state.uploaded_images.append(img_file)
|
42 |
+
st.session_state.image_tags[img_file.name] = label
|
43 |
+
|
44 |
+
# --- Show grid of classified images ---
|
45 |
+
if st.session_state.uploaded_images:
|
46 |
+
html = """
|
47 |
+
<style>
|
48 |
+
.image-grid { display: flex; flex-wrap: wrap; gap: 12px; margin-top: 10px; }
|
49 |
+
.image-card {
|
50 |
+
width: 140px; height: 180px;
|
51 |
+
border: 1px solid #ccc; border-radius: 10px;
|
52 |
+
overflow: hidden; text-align: center;
|
53 |
+
font-size: 13px; position: relative;
|
54 |
+
background: #fdfdfd; box-shadow: 0 1px 4px rgba(0,0,0,0.08);
|
55 |
+
}
|
56 |
+
.image-card img {
|
57 |
+
max-width: 100%; max-height: 110px;
|
58 |
+
object-fit: contain; margin-top: 5px;
|
59 |
+
}
|
60 |
+
.remove-btn {
|
61 |
+
position: absolute; top: 2px; right: 6px;
|
62 |
+
color: #d33; background: #fff;
|
63 |
+
border: none; cursor: pointer; font-size: 16px;
|
64 |
+
}
|
65 |
+
</style>
|
66 |
+
<div class="image-grid">
|
67 |
+
"""
|
68 |
+
|
69 |
+
for img in st.session_state.uploaded_images:
|
70 |
+
label = st.session_state.image_tags.get(img.name, "unknown")
|
71 |
+
img_b64 = base64.b64encode(img.getvalue()).decode()
|
72 |
+
html += f"""
|
73 |
+
<div class="image-card">
|
74 |
+
<img src="data:image/png;base64,{img_b64}" />
|
75 |
+
<div><b>{label.upper()}</b></div>
|
76 |
+
<div style="color:gray; font-size:11px;">{img.name}</div>
|
77 |
+
</div>
|
78 |
+
"""
|
79 |
+
|
80 |
+
html += "</div>"
|
81 |
+
grid_rows = ((len(st.session_state.uploaded_images) - 1) // 5 + 1)
|
82 |
+
components.html(html, height=200 * grid_rows + 20, scrolling=True)
|
83 |
+
|
84 |
+
# --- Recipe Search ---
|
85 |
+
st.markdown("---")
|
86 |
+
st.markdown("## π Recipe Recommendation")
|
87 |
+
|
88 |
+
if 'search_system' not in st.session_state:
|
89 |
+
with st.spinner("Initializing recipe search system"):
|
90 |
+
st.session_state.search_system = search_for_recipes()
|
91 |
+
|
92 |
+
search_system = st.session_state.search_system
|
93 |
+
|
94 |
+
if not search_system.is_ready:
|
95 |
+
st.error("System not ready. Please check data files and try again.")
|
96 |
+
return
|
97 |
+
|
98 |
+
unique_tags = list(set(st.session_state.image_tags.values()))
|
99 |
+
default_query = " ".join(unique_tags)
|
100 |
+
|
101 |
+
query = st.text_input(
|
102 |
+
"Search for recipes:",
|
103 |
+
value=default_query,
|
104 |
+
placeholder="e.g., 'onion tomato pasta', 'strawberry dessert', etc."
|
105 |
+
)
|
106 |
+
|
107 |
+
col1, col2 = st.columns(2)
|
108 |
+
with col1:
|
109 |
+
num_results = st.slider("Number of results", 1, 15, 5)
|
110 |
+
with col2:
|
111 |
+
min_rating = st.slider("Minimum rating", 1.0, 5.0, 3.0, 0.1)
|
112 |
+
|
113 |
+
if st.button("π Search Recipes") and query:
|
114 |
+
with st.spinner(f"Searching for '{query}'..."):
|
115 |
+
results = search_system.search_recipes(query, num_results, min_rating)
|
116 |
+
|
117 |
+
if results:
|
118 |
+
st.markdown(f"### Top {len(results)} recipe recommendations for: *'{query}'*")
|
119 |
+
st.markdown("<hr>", unsafe_allow_html=True)
|
120 |
+
|
121 |
+
for i, recipe in enumerate(results, 1):
|
122 |
+
steps_html = "".join([f"<li>{step.strip().capitalize()}</li>" for step in recipe.get("steps", [])])
|
123 |
+
description = recipe.get("description", "").strip().capitalize()
|
124 |
+
|
125 |
+
html_code = f"""
|
126 |
+
<div style="margin: 8px 0; padding: 8px; border-radius: 12px; background-color: #fdfdfd;
|
127 |
+
box-shadow: 0 2px 8px rgba(0,0,0,0.06); font-family: Arial, sans-serif;
|
128 |
+
border: 1px solid #e0e0e0;">
|
129 |
+
<div style="font-size: 18px; font-weight: bold; color: #333; margin-bottom: 8px;">
|
130 |
+
{i}. {recipe['name']}
|
131 |
+
</div>
|
132 |
+
<div style="margin: 4px 0 12px 0; font-size: 14px; color: #555;">
|
133 |
+
<b>{recipe['minutes']} min</b> |
|
134 |
+
<b>{recipe['n_steps']} steps</b> |
|
135 |
+
<b>{recipe['avg_rating']:.1f}/5.0</b>
|
136 |
+
<span style="font-size: 12px; color: #999;">({recipe['num_ratings']} ratings)</span>
|
137 |
+
</div>
|
138 |
+
<div style="margin-bottom: 8px; font-size: 14px;">
|
139 |
+
<b>Match Score:</b>
|
140 |
+
<span style="color: #007acc; font-weight: bold;">{recipe['similarity_score']:.1%}</span>
|
141 |
+
<span style="font-size: 12px; color: #888;">(query match)</span>
|
142 |
+
</div>
|
143 |
+
<div style="margin-bottom: 8px;">
|
144 |
+
<b>Tags:</b><br>
|
145 |
+
<div style="margin-top: 8px;">
|
146 |
+
{" ".join([f"<span style='background:#eee;padding:4px 8px;border-radius:6px;margin:2px;display:inline-block;font-size:12px'>{tag}</span>" for tag in recipe['tags']])}
|
147 |
+
</div>
|
148 |
+
</div>
|
149 |
+
<div style="margin-bottom: 8px;">
|
150 |
+
<b>Ingredients:</b><br>
|
151 |
+
<span style="font-size: 13px; color: #444; display: block;">
|
152 |
+
{', '.join(recipe['ingredients'][:8])}{'...' if len(recipe['ingredients']) > 8 else ''}
|
153 |
+
</span>
|
154 |
+
</div>
|
155 |
+
{f"<div style='margin-top: 10px; font-size: 13px; color: #333;'><b>Description:</b><br><span>{description}</span></div>" if description else ""}
|
156 |
+
{f"<div style='margin-top: 10px; font-size: 13px;'><b>Steps:</b><ol style='margin: 6px 0 0 18px; padding: 0;'>{steps_html}</ol></div>" if steps_html else ""}
|
157 |
+
</div>
|
158 |
+
"""
|
159 |
+
components.html(html_code, height=340, scrolling=True)
|
160 |
+
else:
|
161 |
+
st.warning(f"No recipes found for '{query}' with a minimum rating of {min_rating}/5.0.")
|
162 |
+
|
163 |
+
render_layout(classification_and_recommendation_page)
|
src/streamlit_app.py
DELETED
@@ -1,40 +0,0 @@
|
|
1 |
-
import altair as alt
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
-
import streamlit as st
|
5 |
-
|
6 |
-
"""
|
7 |
-
# Welcome to Streamlit!
|
8 |
-
|
9 |
-
Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
|
10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
11 |
-
forums](https://discuss.streamlit.io).
|
12 |
-
|
13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
14 |
-
"""
|
15 |
-
|
16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
18 |
-
|
19 |
-
indices = np.linspace(0, 1, num_points)
|
20 |
-
theta = 2 * np.pi * num_turns * indices
|
21 |
-
radius = indices
|
22 |
-
|
23 |
-
x = radius * np.cos(theta)
|
24 |
-
y = radius * np.sin(theta)
|
25 |
-
|
26 |
-
df = pd.DataFrame({
|
27 |
-
"x": x,
|
28 |
-
"y": y,
|
29 |
-
"idx": indices,
|
30 |
-
"rand": np.random.randn(num_points),
|
31 |
-
})
|
32 |
-
|
33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
34 |
-
.mark_point(filled=True)
|
35 |
-
.encode(
|
36 |
-
x=alt.X("x", axis=None),
|
37 |
-
y=alt.Y("y", axis=None),
|
38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
-
))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|