import streamlit as st
from PIL import Image
from model.classifier import get_model, predict
from model.search_script import search_for_recipes
import streamlit.components.v1 as components
import time
import base64
from utils.layout import render_layout
@st.cache_resource
def load_model():
return get_model()
def classification_and_recommendation_page():
st.markdown("## 🖼️ Task A: Image Classification + 🍽️ Recipe Recommendation")
st.markdown("""
Upload one or more food images. This module classifies each image into
Onion, Pear, Strawberry, or Tomato using EfficientNet-B0, and then recommends recipes
based on the combined classification results.
""", unsafe_allow_html=True)
model = load_model()
# --- Upload and classify ---
uploaded_files = st.file_uploader("📤 Upload images (JPG/PNG)", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
if "uploaded_images" not in st.session_state:
st.session_state.uploaded_images = []
if "image_tags" not in st.session_state:
st.session_state.image_tags = {}
if uploaded_files:
for img_file in uploaded_files:
if img_file.name not in [img.name for img in st.session_state.uploaded_images]:
img = Image.open(img_file).convert("RGB")
label, _ = predict(img, model)
st.session_state.uploaded_images.append(img_file)
st.session_state.image_tags[img_file.name] = label
# --- Show grid of classified images ---
if st.session_state.uploaded_images:
html = """
"""
for img in st.session_state.uploaded_images:
label = st.session_state.image_tags.get(img.name, "unknown")
img_b64 = base64.b64encode(img.getvalue()).decode()
html += f"""
{label.upper()}
{img.name}
"""
html += "
"
grid_rows = ((len(st.session_state.uploaded_images) - 1) // 5 + 1)
components.html(html, height=200 * grid_rows + 20, scrolling=True)
# --- Recipe Search ---
st.markdown("---")
st.markdown("## 🔍 Recipe Recommendation")
if 'search_system' not in st.session_state:
with st.spinner("Initializing recipe search system"):
st.session_state.search_system = search_for_recipes()
search_system = st.session_state.search_system
if not search_system.is_ready:
st.error("System not ready. Please check data files and try again.")
return
unique_tags = list(set(st.session_state.image_tags.values()))
default_query = " ".join(unique_tags)
query = st.text_input(
"Search for recipes:",
value=default_query,
placeholder="e.g., 'onion tomato pasta', 'strawberry dessert', etc."
)
col1, col2 = st.columns(2)
with col1:
num_results = st.slider("Number of results", 1, 15, 5)
with col2:
min_rating = st.slider("Minimum rating", 1.0, 5.0, 3.0, 0.1)
if st.button("🔍 Search Recipes") and query:
with st.spinner(f"Searching for '{query}'..."):
results = search_system.search_recipes(query, num_results, min_rating)
if results:
st.markdown(f"### Top {len(results)} recipe recommendations for: *'{query}'*")
st.markdown("
", unsafe_allow_html=True)
for i, recipe in enumerate(results, 1):
steps_html = "".join([f"{step.strip().capitalize()}" for step in recipe.get("steps", [])])
description = recipe.get("description", "").strip().capitalize()
html_code = f"""
{i}. {recipe['name']}
{recipe['minutes']} min |
{recipe['n_steps']} steps |
{recipe['avg_rating']:.1f}/5.0
({recipe['num_ratings']} ratings)
Match Score:
{recipe['similarity_score']:.1%}
(query match)
Tags:
{" ".join([f"{tag}" for tag in recipe['tags']])}
Ingredients:
{', '.join(recipe['ingredients'][:8])}{'...' if len(recipe['ingredients']) > 8 else ''}
{f"
Description:
{description}
" if description else ""}
{f"
" if steps_html else ""}
"""
components.html(html_code, height=340, scrolling=True)
else:
st.warning(f"No recipes found for '{query}' with a minimum rating of {min_rating}/5.0.")
render_layout(classification_and_recommendation_page)