import streamlit as st
from PIL import Image
from model.classifier import get_model, predict, get_model_by_name
from model.search_script import search_for_recipes
import streamlit.components.v1 as components
import base64
import config as config
from utils.layout import render_layout
MODEL_PATH_MAP = {
"Onion": config.MODEL_PATH_ONION,
"Pear": config.MODEL_PATH_PEAR,
"Strawberry": config.MODEL_PATH_STRAWBERRY,
"Tomato": config.MODEL_PATH_TOMATO
}
VARIATION_CLASS_MAP = {
"Onion": ['halved', 'sliced', 'whole'],
"Strawberry": ['Hulled', 'sliced', 'whole'],
"Tomato": ['diced', 'vines', 'whole'],
"Pear": ['halved', 'sliced', 'whole']
}
@st.cache_resource
def load_model():
return get_model()
@st.cache_resource
def load_model_variation(product_name):
model_path = MODEL_PATH_MAP[product_name]
num_classes = len(VARIATION_CLASS_MAP[product_name])
return get_model_by_name(model_path, num_classes=num_classes)
def classification_and_recommendation_page():
st.markdown("## 🍽️ Recipe Recommendation System")
st.markdown("""
Recipe Recommendation Guide
Upload one or more food images. This module classifies each image into
Onion, Pear, Strawberry, or Tomato using EfficientNet-B0, and recommends recipes
based on the combined classification results, using a fine-tuned BERT model.
Steps:
1️⃣ Upload images (single or multiple) of produce, or directly add tags for recipe search.
2️⃣ Once uploaded, the corresponding produce tag will be automatically added to the search.
3️⃣ Use the sliders to choose the number of results and minimum recipe rating.
4️⃣ Click "Search Recipe" to view personalized recommendations.
""", unsafe_allow_html=True)
model = load_model()
uploaded_files = st.file_uploader("📤 Upload images (JPG/PNG)", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
if "uploaded_images" not in st.session_state:
st.session_state.uploaded_images = []
if "image_tags" not in st.session_state:
st.session_state.image_tags = {}
if "image_variations" not in st.session_state:
st.session_state.image_variations = {}
if uploaded_files:
for img_file in uploaded_files:
if img_file.name not in [img.name for img in st.session_state.uploaded_images]:
img = Image.open(img_file).convert("RGB")
label, main_class_prob = predict(img, model)
variation = None
if label in VARIATION_CLASS_MAP:
variation_model = load_model_variation(label)
class_labels = VARIATION_CLASS_MAP[label]
variation_label, var_conf = predict(img, variation_model, class_labels=class_labels)
variation = f"{variation_label} ({var_conf*main_class_prob* 100:.1f}%)"
st.session_state.uploaded_images.append(img_file)
st.session_state.image_tags[img_file.name] = label
st.session_state.image_variations[img_file.name] = variation
current_file_names = [f.name for f in uploaded_files] if uploaded_files else []
st.session_state.uploaded_images = [f for f in st.session_state.uploaded_images if f.name in current_file_names]
st.session_state.image_tags = {k: v for k, v in st.session_state.image_tags.items() if k in current_file_names}
st.session_state.image_variations = {k: v for k, v in st.session_state.image_variations.items() if k in current_file_names}
if st.session_state.uploaded_images:
html = """
"""
for img in st.session_state.uploaded_images:
label = st.session_state.image_tags.get(img.name, "unknown")
variation = st.session_state.image_variations.get(img.name, "")
combined_label = f"{label.upper()} {variation}" if variation else label.upper()
img_b64 = base64.b64encode(img.getvalue()).decode()
html += f"""
{combined_label}
{img.name}
"""
html += "
"
grid_rows = ((len(st.session_state.uploaded_images) - 1) // 5 + 1)
components.html(html, height=200 * grid_rows + 40, scrolling=True)
st.markdown("---")
st.markdown("## 🔍 Recipe Recommendation")
if 'search_system' not in st.session_state:
with st.spinner("Initializing recipe search system"):
st.session_state.search_system = search_for_recipes()
search_system = st.session_state.search_system
if not search_system.is_ready:
st.error("System not ready. Please check data files and try again.")
return
unique_tags = list(set(st.session_state.image_tags.values()))
default_query = " ".join(unique_tags)
query = st.text_input(
"Search for recipes:",
value=default_query,
placeholder="e.g., 'onion tomato pasta', 'strawberry dessert', etc."
)
col1, col2 = st.columns(2)
with col1:
num_results = st.slider("Number of results", 1, 15, 5)
with col2:
min_rating = st.slider("Minimum rating", 1.0, 5.0, 3.0, 0.1)
if st.button("🔍 Search Recipes") and query:
with st.spinner(f"Searching for '{query}'..."):
results = search_system.search_recipes(query, num_results, min_rating)
if results:
st.markdown(f"### Top {len(results)} recipe recommendations for: *'{query}'*")
st.markdown("
", unsafe_allow_html=True)
for i, recipe in enumerate(results, 1):
steps_html = "".join([f"{step.strip().capitalize()}" for step in recipe.get("steps", [])])
description = recipe.get("description", "").strip().capitalize()
html_code = f"""
{i}. {recipe['name']}
{recipe['minutes']} min |
{recipe['n_steps']} steps |
{recipe['avg_rating']:.1f}/5.0
({recipe['num_ratings']} ratings)
Match Score:
{recipe['similarity_score']:.1%}
(query match)
Tags:
{" ".join([f"{tag}" for tag in recipe['tags']])}
Ingredients:
{', '.join(recipe['ingredients'][:8])}{'...' if len(recipe['ingredients']) > 8 else ''}
{f"
Description:
{description}
" if description else ""}
{f"
" if steps_html else ""}
"""
components.html(html_code, height=340, scrolling=True)
else:
st.warning(f"No recipes found for '{query}' with a minimum rating of {min_rating}/5.0.")
render_layout(classification_and_recommendation_page)