Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoProcessor, AutoModelForImageTextToText | |
from PIL import Image | |
import re | |
# Load SmolDocling model & processor once | |
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview") | |
model = AutoModelForImageTextToText.from_pretrained("ds4sd/SmolDocling-256M-preview") | |
def extract_fcel_values_from_image(image, prompt_text): | |
"""Run SmolDocling on an image and return numeric values inside <fcel> tags.""" | |
# Prepare prompt for the model | |
messages = [ | |
{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_text}]} | |
] | |
prompt = processor.apply_chat_template(messages, add_generation_prompt=True) | |
inputs = processor(text=prompt, images=[image], return_tensors="pt") | |
# Generate output | |
outputs = model.generate(**inputs, max_new_tokens=2048) | |
prompt_length = inputs.input_ids.shape[1] | |
generated = outputs[:, prompt_length:] | |
result = processor.batch_decode(generated, skip_special_tokens=False)[0] | |
clean_text = result.replace("<end_of_utterance>", "").strip() | |
# Extract only <fcel> values | |
values = re.findall(r"<fcel>([\d.]+)", clean_text) | |
values = [float(v) for v in values] # convert to floats | |
return values, clean_text | |
def compare_images(image1, image2, prompt_text): | |
# Extract fcel values from both images | |
values1, raw1 = extract_fcel_values_from_image(image1, prompt_text) | |
values2, raw2 = extract_fcel_values_from_image(image2, prompt_text) | |
# Calculate accuracy | |
if len(values1) == len(values2) and values1 == values2: | |
accuracy = 100.0 | |
else: | |
matches = sum(1 for a, b in zip(values1, values2) if a == b) | |
total = max(len(values1), len(values2)) | |
accuracy = (matches / total) * 100 if total > 0 else 0 | |
return { | |
"Extracted Values 1": values1, | |
"Extracted Values 2": values2, | |
"Accuracy (%)": accuracy | |
} | |
# Gradio UI | |
demo = gr.Interface( | |
fn=compare_images, | |
inputs=[ | |
gr.Image(type="pil", label="Upload First Table Image"), | |
gr.Image(type="pil", label="Upload Second Table Image"), | |
gr.Textbox(lines=1, placeholder="Enter prompt (e.g. Extract table as OTSL)", label="Prompt") | |
], | |
outputs="json", | |
title="Table Data Accuracy Checker (SmolDocling)", | |
description="Uploads two table images, extracts only <fcel> values from OTSL output, and compares them for accuracy." | |
) | |
demo.launch() | |