Docling_Image / app.py
Pavan147's picture
Update app.py
a62604d verified
raw
history blame
2.46 kB
import gradio as gr
from transformers import AutoProcessor, AutoModelForImageTextToText
from PIL import Image
import re
# Load SmolDocling model & processor once
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
model = AutoModelForImageTextToText.from_pretrained("ds4sd/SmolDocling-256M-preview")
def extract_fcel_values_from_image(image, prompt_text):
"""Run SmolDocling on an image and return numeric values inside <fcel> tags."""
# Prepare prompt for the model
messages = [
{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_text}]}
]
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[image], return_tensors="pt")
# Generate output
outputs = model.generate(**inputs, max_new_tokens=2048)
prompt_length = inputs.input_ids.shape[1]
generated = outputs[:, prompt_length:]
result = processor.batch_decode(generated, skip_special_tokens=False)[0]
clean_text = result.replace("<end_of_utterance>", "").strip()
# Extract only <fcel> values
values = re.findall(r"<fcel>([\d.]+)", clean_text)
values = [float(v) for v in values] # convert to floats
return values, clean_text
def compare_images(image1, image2, prompt_text):
# Extract fcel values from both images
values1, raw1 = extract_fcel_values_from_image(image1, prompt_text)
values2, raw2 = extract_fcel_values_from_image(image2, prompt_text)
# Calculate accuracy
if len(values1) == len(values2) and values1 == values2:
accuracy = 100.0
else:
matches = sum(1 for a, b in zip(values1, values2) if a == b)
total = max(len(values1), len(values2))
accuracy = (matches / total) * 100 if total > 0 else 0
return {
"Extracted Values 1": values1,
"Extracted Values 2": values2,
"Accuracy (%)": accuracy
}
# Gradio UI
demo = gr.Interface(
fn=compare_images,
inputs=[
gr.Image(type="pil", label="Upload First Table Image"),
gr.Image(type="pil", label="Upload Second Table Image"),
gr.Textbox(lines=1, placeholder="Enter prompt (e.g. Extract table as OTSL)", label="Prompt")
],
outputs="json",
title="Table Data Accuracy Checker (SmolDocling)",
description="Uploads two table images, extracts only <fcel> values from OTSL output, and compares them for accuracy."
)
demo.launch()