Spaces:
Sleeping
Sleeping
# import re | |
# import gradio as gr | |
# from transformers import AutoProcessor, AutoModelForImageTextToText | |
# from PIL import Image | |
# # Load model & processor once at startup | |
# processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview") | |
# model = AutoModelForImageTextToText.from_pretrained("ds4sd/SmolDocling-256M-preview") | |
# def smoldocling_readimage(image, prompt_text="Convert to docling"): | |
# messages = [ | |
# {"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_text}]} | |
# ] | |
# prompt = processor.apply_chat_template(messages, add_generation_prompt=True) | |
# inputs = processor(text=prompt, images=[image], return_tensors="pt") | |
# outputs = model.generate(**inputs, max_new_tokens=1024) | |
# prompt_length = inputs.input_ids.shape[1] | |
# generated = outputs[:, prompt_length:] | |
# result = processor.batch_decode(generated, skip_special_tokens=False)[0] | |
# return result.replace("<end_of_utterance>", "").strip() | |
# def extract_numbers(docling_text): | |
# # Extract all floating numbers from the docling text using regex | |
# numbers = re.findall(r"[-+]?\d*\.\d+|\d+", docling_text) | |
# return list(map(float, numbers)) | |
# def compare_outputs(img1, img2): | |
# # Extract docling text from both images | |
# output1 = smoldocling_readimage(img1) | |
# output2 = smoldocling_readimage(img2) | |
# # Extract numbers from both outputs | |
# nums1 = extract_numbers(output1) | |
# nums2 = extract_numbers(output2) | |
# # Compare numbers β find matching count based on position | |
# length = min(len(nums1), len(nums2)) | |
# matches = sum(1 for i in range(length) if abs(nums1[i] - nums2[i]) < 1e-3) | |
# # Calculate similarity accuracy percentage | |
# total = max(len(nums1), len(nums2)) | |
# accuracy = (matches / total) * 100 if total > 0 else 0 | |
# # Prepare result text | |
# result_text = ( | |
# f"Output for Image 1:\n{output1}\n\n" | |
# f"Output for Image 2:\n{output2}\n\n" | |
# f"Similarity Accuracy: {accuracy:.2f}%\n" | |
# f"Matching Values: {matches} out of {total}" | |
# ) | |
# return result_text | |
# # Gradio UI: take 2 images, output similarity report | |
# demo = gr.Interface( | |
# fn=compare_outputs, | |
# inputs=[ | |
# gr.Image(type="pil", label="Upload Image 1"), | |
# gr.Image(type="pil", label="Upload Image 2"), | |
# ], | |
# outputs="text", | |
# title="SmolDocling Image Comparison", | |
# description="Upload two document images. This app extracts data from both and compares similarity." | |
# ) | |
# demo.launch() | |
import re | |
import gradio as gr | |
from transformers import AutoProcessor, AutoModelForImageTextToText | |
from PIL import Image | |
# Load model & processor once at startup | |
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview") | |
model = AutoModelForImageTextToText.from_pretrained("ds4sd/SmolDocling-256M-preview") | |
def smoldocling_readimage(image, prompt_text="Convert to docling"): | |
messages = [ | |
{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_text}]} | |
] | |
prompt = processor.apply_chat_template(messages, add_generation_prompt=True) | |
inputs = processor(text=prompt, images=[image], return_tensors="pt") | |
outputs = model.generate(**inputs, max_new_tokens=1024) | |
prompt_length = inputs.input_ids.shape[1] | |
generated = outputs[:, prompt_length:] | |
result = processor.batch_decode(generated, skip_special_tokens=False)[0] | |
return result.replace("<end_of_utterance>", "").strip() | |
def extract_numbers(docling_text): | |
# Extract all floating numbers from the docling text | |
numbers = re.findall(r"[-+]?\d*\.\d+|\d+", docling_text) | |
return list(map(float, numbers)) | |
def compare_outputs(img1, img2): | |
# Get outputs | |
output1 = smoldocling_readimage(img1) | |
output2 = smoldocling_readimage(img2) | |
# Extract numbers | |
nums1 = extract_numbers(output1) | |
nums2 = extract_numbers(output2) | |
length = min(len(nums1), len(nums2)) | |
matches = 0 | |
mismatches = [] | |
for i in range(length): | |
if abs(nums1[i] - nums2[i]) < 1e-3: | |
matches += 1 | |
else: | |
mismatches.append(f"Pos {i+1}: {nums1[i]} β {nums2[i]}") | |
total = max(len(nums1), len(nums2)) | |
accuracy = (matches / total) * 100 if total > 0 else 0 | |
mismatch_text = "\n".join(mismatches) if mismatches else "β All values match." | |
result_text = ( | |
f"π Output for Image 1:\n{output1}\n\n" | |
f"π Output for Image 2:\n{output2}\n\n" | |
f"π Similarity Accuracy: {accuracy:.2f}%\n" | |
f"β Matching Values: {matches} / {total}\n" | |
f"β Mismatches:\n{mismatch_text}" | |
) | |
return result_text | |
# Gradio UI | |
demo = gr.Interface( | |
fn=compare_outputs, | |
inputs=[ | |
gr.Image(type="pil", label="Upload Image 1"), | |
gr.Image(type="pil", label="Upload Image 2"), | |
], | |
outputs="text", | |
title="SmolDocling Image Comparison", | |
description="Upload two document images to extract values and compare similarity, with detailed mismatches." | |
) | |
demo.launch() | |