Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -63,6 +63,41 @@
|
|
63 |
|
64 |
# demo.launch()
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
import gradio as gr
|
67 |
from transformers import AutoProcessor, AutoModelForImageTextToText
|
68 |
from PIL import Image
|
@@ -80,8 +115,17 @@ def smoldocling_readimage(image, prompt_text):
|
|
80 |
outputs = model.generate(**inputs, max_new_tokens=1024)
|
81 |
prompt_length = inputs.input_ids.shape[1]
|
82 |
generated = outputs[:, prompt_length:]
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
# Gradio UI
|
87 |
demo = gr.Interface(
|
@@ -90,9 +134,9 @@ demo = gr.Interface(
|
|
90 |
gr.Image(type="pil", label="Upload Image"),
|
91 |
gr.Textbox(lines=1, placeholder="Enter prompt (e.g. Convert to docling)", label="Prompt"),
|
92 |
],
|
93 |
-
outputs="
|
94 |
title="SmolDocling Web App",
|
95 |
description="Upload a document image and convert it to structured docling format."
|
96 |
)
|
97 |
|
98 |
-
demo.launch()
|
|
|
63 |
|
64 |
# demo.launch()
|
65 |
|
66 |
+
# import gradio as gr
|
67 |
+
# from transformers import AutoProcessor, AutoModelForImageTextToText
|
68 |
+
# from PIL import Image
|
69 |
+
|
70 |
+
# # Load model & processor once at startup
|
71 |
+
# processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
|
72 |
+
# model = AutoModelForImageTextToText.from_pretrained("ds4sd/SmolDocling-256M-preview")
|
73 |
+
|
74 |
+
# def smoldocling_readimage(image, prompt_text):
|
75 |
+
# messages = [
|
76 |
+
# {"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_text}]}
|
77 |
+
# ]
|
78 |
+
# prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
79 |
+
# inputs = processor(text=prompt, images=[image], return_tensors="pt")
|
80 |
+
# outputs = model.generate(**inputs, max_new_tokens=1024)
|
81 |
+
# prompt_length = inputs.input_ids.shape[1]
|
82 |
+
# generated = outputs[:, prompt_length:]
|
83 |
+
# result = processor.batch_decode(generated, skip_special_tokens=False)[0]
|
84 |
+
# return result.replace("<end_of_utterance>", "").strip()
|
85 |
+
|
86 |
+
# # Gradio UI
|
87 |
+
# demo = gr.Interface(
|
88 |
+
# fn=smoldocling_readimage,
|
89 |
+
# inputs=[
|
90 |
+
# gr.Image(type="pil", label="Upload Image"),
|
91 |
+
# gr.Textbox(lines=1, placeholder="Enter prompt (e.g. Convert to docling)", label="Prompt"),
|
92 |
+
# ],
|
93 |
+
# outputs="html",
|
94 |
+
# title="SmolDocling Web App",
|
95 |
+
# description="Upload a document image and convert it to structured docling format."
|
96 |
+
# )
|
97 |
+
|
98 |
+
# demo.launch()
|
99 |
+
|
100 |
+
import re
|
101 |
import gradio as gr
|
102 |
from transformers import AutoProcessor, AutoModelForImageTextToText
|
103 |
from PIL import Image
|
|
|
115 |
outputs = model.generate(**inputs, max_new_tokens=1024)
|
116 |
prompt_length = inputs.input_ids.shape[1]
|
117 |
generated = outputs[:, prompt_length:]
|
118 |
+
raw_result = processor.batch_decode(generated, skip_special_tokens=False)[0]
|
119 |
+
|
120 |
+
# Remove all tags like <tag> and </tag>
|
121 |
+
text_without_tags = re.sub(r'<.*?>', '', raw_result)
|
122 |
+
|
123 |
+
# Extract all numbers (integers or decimals)
|
124 |
+
numbers = re.findall(r'\d+\.\d+|\d+', text_without_tags)
|
125 |
+
|
126 |
+
# Join numbers with commas
|
127 |
+
cleaned_result = ",".join(numbers)
|
128 |
+
return cleaned_result
|
129 |
|
130 |
# Gradio UI
|
131 |
demo = gr.Interface(
|
|
|
134 |
gr.Image(type="pil", label="Upload Image"),
|
135 |
gr.Textbox(lines=1, placeholder="Enter prompt (e.g. Convert to docling)", label="Prompt"),
|
136 |
],
|
137 |
+
outputs="text",
|
138 |
title="SmolDocling Web App",
|
139 |
description="Upload a document image and convert it to structured docling format."
|
140 |
)
|
141 |
|
142 |
+
demo.launch()
|