Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,65 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoProcessor,
|
3 |
-
from
|
|
|
|
|
|
|
4 |
import re
|
|
|
5 |
|
6 |
-
# Load
|
7 |
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
|
8 |
-
model =
|
9 |
-
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
# "Extracted Values 1": values1,
|
47 |
-
# "Extracted Values 2": values2,
|
48 |
-
"Accuracy (%)": accuracy
|
49 |
}
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
# Gradio UI
|
52 |
demo = gr.Interface(
|
53 |
-
fn=
|
54 |
-
inputs=
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
],
|
59 |
-
outputs="json",
|
60 |
-
title="Table Data Accuracy Checker (SmolDocling)",
|
61 |
-
description="Uploads two table images, extracts only <fcel> values from OTSL output, and compares them for accuracy."
|
62 |
)
|
63 |
|
64 |
-
demo.launch()
|
|
|
65 |
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# from transformers import AutoProcessor, AutoModelForImageTextToText
|
3 |
+
# from PIL import Image
|
4 |
+
# import re
|
5 |
+
|
6 |
+
# # Load SmolDocling model & processor once
|
7 |
+
# processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
|
8 |
+
# model = AutoModelForImageTextToText.from_pretrained("ds4sd/SmolDocling-256M-preview")
|
9 |
+
|
10 |
+
# def extract_fcel_values_from_image(image, prompt_text):
|
11 |
+
# """Run SmolDocling on an image and return numeric values inside <fcel> tags."""
|
12 |
+
# # Prepare prompt for the model
|
13 |
+
# messages = [
|
14 |
+
# {"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_text}]}
|
15 |
+
# ]
|
16 |
+
# prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
17 |
+
# inputs = processor(text=prompt, images=[image], return_tensors="pt")
|
18 |
+
|
19 |
+
# # Generate output
|
20 |
+
# outputs = model.generate(**inputs, max_new_tokens=2048)
|
21 |
+
# prompt_length = inputs.input_ids.shape[1]
|
22 |
+
# generated = outputs[:, prompt_length:]
|
23 |
+
# result = processor.batch_decode(generated, skip_special_tokens=False)[0]
|
24 |
+
# clean_text = result.replace("<end_of_utterance>", "").strip()
|
25 |
+
|
26 |
+
# # Extract only <fcel> values
|
27 |
+
# values = re.findall(r"<fcel>([\d.]+)", clean_text)
|
28 |
+
# values = [float(v) for v in values] # convert to floats
|
29 |
+
|
30 |
+
# return values, clean_text
|
31 |
+
|
32 |
+
# def compare_images(image1, image2, prompt_text):
|
33 |
+
# # Extract fcel values from both images
|
34 |
+
# values1, raw1 = extract_fcel_values_from_image(image1, prompt_text)
|
35 |
+
# values2, raw2 = extract_fcel_values_from_image(image2, prompt_text)
|
36 |
+
|
37 |
+
# # Calculate accuracy
|
38 |
+
# if len(values1) == len(values2) and values1 == values2:
|
39 |
+
# accuracy = 100.0
|
40 |
+
# else:
|
41 |
+
# matches = sum(1 for a, b in zip(values1, values2) if a == b)
|
42 |
+
# total = max(len(values1), len(values2))
|
43 |
+
# accuracy = (matches / total) * 100 if total > 0 else 0
|
44 |
+
|
45 |
+
# return {
|
46 |
+
# # "Extracted Values 1": values1,
|
47 |
+
# # "Extracted Values 2": values2,
|
48 |
+
# "Accuracy (%)": accuracy
|
49 |
+
# }
|
50 |
+
|
51 |
+
# # Gradio UI
|
52 |
+
# demo = gr.Interface(
|
53 |
+
# fn=compare_images,
|
54 |
+
# inputs=[
|
55 |
+
# gr.Image(type="pil", label="Upload First Table Image"),
|
56 |
+
# gr.Image(type="pil", label="Upload Second Table Image"),
|
57 |
+
# gr.Textbox(lines=1, placeholder="Enter prompt (e.g. Extract table as OTSL)", label="Prompt")
|
58 |
+
# ],
|
59 |
+
# outputs="json",
|
60 |
+
# title="Table Data Accuracy Checker (SmolDocling)",
|
61 |
+
# description="Uploads two table images, extracts only <fcel> values from OTSL output, and compares them for accuracy."
|
62 |
+
# )
|
63 |
+
|
64 |
+
# demo.launch()
|
65 |
+
|
66 |
import gradio as gr
|
67 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq, TextIteratorStreamer
|
68 |
+
from transformers.image_utils import load_image
|
69 |
+
from threading import Thread
|
70 |
+
import torch
|
71 |
+
import html
|
72 |
import re
|
73 |
+
from PIL import Image, ImageOps
|
74 |
|
75 |
+
# Load model & processor once at startup
|
76 |
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
|
77 |
+
model = AutoModelForVision2Seq.from_pretrained("ds4sd/SmolDocling-256M-preview", torch_dtype=torch.bfloat16).to("cuda")
|
78 |
+
|
79 |
+
def add_random_padding(image, min_percent=0.1, max_percent=0.10):
|
80 |
+
image = image.convert("RGB")
|
81 |
+
width, height = image.size
|
82 |
+
pad_w_percent = random.uniform(min_percent, max_percent)
|
83 |
+
pad_h_percent = random.uniform(min_percent, max_percent)
|
84 |
+
pad_w = int(width * pad_w_percent)
|
85 |
+
pad_h = int(height * pad_h_percent)
|
86 |
+
corner_pixel = image.getpixel((0, 0)) # Top-left corner
|
87 |
+
padded_image = ImageOps.expand(image, border=(pad_w, pad_h, pad_w, pad_h), fill=corner_pixel)
|
88 |
+
return padded_image
|
89 |
+
|
90 |
+
def extract_table(image_file):
|
91 |
+
# Load image
|
92 |
+
image = load_image(image_file)
|
93 |
+
|
94 |
+
# Optionally add padding if needed for model robustness (optional)
|
95 |
+
image = add_random_padding(image)
|
96 |
+
|
97 |
+
# Fixed prompt to extract table only (modify if needed)
|
98 |
+
text = "Convert this table to OTSL."
|
99 |
+
|
100 |
+
# Build the message structure for processor
|
101 |
+
resulting_messages = [{
|
102 |
+
"role": "user",
|
103 |
+
"content": [{"type": "image"}] + [{"type": "text", "text": text}]
|
104 |
+
}]
|
105 |
+
|
106 |
+
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
|
107 |
+
inputs = processor(text=prompt, images=[image], return_tensors="pt").to('cuda')
|
108 |
+
|
109 |
+
generation_args = {
|
110 |
+
"input_ids": inputs.input_ids,
|
111 |
+
"pixel_values": inputs.pixel_values,
|
112 |
+
"attention_mask": inputs.attention_mask,
|
113 |
+
"max_new_tokens": 8192,
|
114 |
+
"num_return_sequences": 1,
|
|
|
|
|
|
|
115 |
}
|
116 |
|
117 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
118 |
+
generation_args["streamer"] = streamer
|
119 |
+
|
120 |
+
thread = Thread(target=model.generate, kwargs=generation_args)
|
121 |
+
thread.start()
|
122 |
+
|
123 |
+
output_text = ""
|
124 |
+
for new_text in streamer:
|
125 |
+
output_text += new_text
|
126 |
+
|
127 |
+
# Clean and return output
|
128 |
+
cleaned_output = output_text.replace("<end_of_utterance>", "").strip()
|
129 |
+
|
130 |
+
# Optionally convert <chart> tags to <otsl> if present
|
131 |
+
if "<chart>" in cleaned_output:
|
132 |
+
cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
|
133 |
+
cleaned_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', cleaned_output)
|
134 |
+
|
135 |
+
return cleaned_output or "No table found or unable to extract."
|
136 |
+
|
137 |
# Gradio UI
|
138 |
demo = gr.Interface(
|
139 |
+
fn=extract_table,
|
140 |
+
inputs=gr.Image(type="filepath", label="Upload Table Image"),
|
141 |
+
outputs=gr.Textbox(label="Extracted Table (OTSL Format)"),
|
142 |
+
title="Table Extraction from Image using SmolDocling-256M",
|
143 |
+
description="Upload an image containing a table. The model will extract the table and output it in OTSL format."
|
|
|
|
|
|
|
|
|
144 |
)
|
145 |
|
146 |
+
demo.launch(debug=True)
|
147 |
+
|
148 |
|