Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate | |
| from llama_index.llms.huggingface import HuggingFaceInferenceAPI | |
| from dotenv import load_dotenv | |
| from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
| from llama_index.core import Settings | |
| import os | |
| import tempfile | |
| # Load environment variables | |
| load_dotenv() | |
| # Configure the Llama index settings | |
| Settings.llm = HuggingFaceInferenceAPI( | |
| model_name="google/gemma-1.1-7b-it", | |
| tokenizer_name="google/gemma-1.1-7b-it", | |
| context_window=3000, | |
| token=os.getenv("HF_TOKEN"), | |
| max_new_tokens=512, | |
| generate_kwargs={"temperature": 0.1}, | |
| ) | |
| Settings.embed_model = HuggingFaceEmbedding( | |
| model_name="BAAI/bge-small-en-v1.5" | |
| ) | |
| # Define the directory for persistent storage and data | |
| PERSIST_DIR = "./db" | |
| DATA_DIR = "data" | |
| # Ensure data directory exists | |
| os.makedirs(DATA_DIR, exist_ok=True) | |
| os.makedirs(PERSIST_DIR, exist_ok=True) | |
| def data_ingestion(): | |
| documents = SimpleDirectoryReader(DATA_DIR).load_data() | |
| storage_context = StorageContext.from_defaults() | |
| index = VectorStoreIndex.from_documents(documents) | |
| index.storage_context.persist(persist_dir=PERSIST_DIR) | |
| def handle_query(query): | |
| storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) | |
| index = load_index_from_storage(storage_context) | |
| chat_text_qa_msgs = [ | |
| ( | |
| "user", | |
| """You are a Q&A assistant named EazyPeazy, For all other inquiries, your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, kindly advise the user to ask questions within the context of the document. | |
| Context: | |
| {context_str} | |
| Question: | |
| {query_str} | |
| """ | |
| ) | |
| ] | |
| text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) | |
| query_engine = index.as_query_engine(text_qa_template=text_qa_template) | |
| answer = query_engine.query(query) | |
| if hasattr(answer, 'response'): | |
| return answer.response | |
| elif isinstance(answer, dict) and 'response' in answer: | |
| return answer['response'] | |
| else: | |
| return "Sorry, I couldn't find an answer." | |
| def process_file(file): | |
| if file is None: | |
| return "Please upload a PDF file." | |
| temp_dir = tempfile.mkdtemp() | |
| temp_path = os.path.join(temp_dir, "uploaded.pdf") | |
| with open(temp_path, "wb") as f: | |
| f.write(file.read()) | |
| # Copy the file to the DATA_DIR | |
| os.makedirs(DATA_DIR, exist_ok=True) | |
| dest_path = os.path.join(DATA_DIR, "saved_pdf.pdf") | |
| os.replace(temp_path, dest_path) | |
| # Process the uploaded PDF | |
| data_ingestion() | |
| return "PDF processed successfully. You can now ask questions about its content." | |
| def chat_function(message, history): | |
| response = handle_query(message) | |
| history.append((message, response)) | |
| return history | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# (PDF) Information and Inference🗞️") | |
| gr.Markdown("Retrieval-Augmented Generation") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| file_output = gr.Textbox(label="Upload Status") | |
| upload_button = gr.UploadButton("Upload PDF", file_types=[".pdf"]) | |
| with gr.Column(scale=2): | |
| chatbot = gr.Chatbot() | |
| msg = gr.Textbox(label="Ask me anything about the content of the PDF:") | |
| clear = gr.Button("Clear") | |
| upload_button.upload(process_file, upload_button, file_output) | |
| msg.submit(chat_function, [msg, chatbot], chatbot) | |
| clear.click(lambda: None, None, chatbot, queue=False) | |
| if __name__ == "__main__": | |
| demo.launch() |