Spaces:
Runtime error
Runtime error
import gradio as gr | |
from llama_index import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader | |
from llama_index.llms import HuggingFaceInferenceAPI | |
from llama_index.prompts import ChatPromptTemplate | |
from llama_index.embeddings import HuggingFaceEmbedding | |
from llama_index import ServiceContext | |
from dotenv import load_dotenv | |
import os | |
import base64 | |
import tempfile | |
from pathlib import Path | |
# Load environment variables | |
load_dotenv() | |
# Configure the Llama index settings | |
llm = HuggingFaceInferenceAPI( | |
model_name="google/gemini-1.1-7b-it", | |
tokenizer_name="google/gemini-1.1-7b-it", | |
context_window=3000, | |
token=os.getenv("HF_TOKEN"), | |
max_new_tokens=512, | |
generate_kwargs={"temperature": 0.1}, | |
) | |
embed_model = HuggingFaceEmbedding( | |
model_name="BAAI/bge-small-en-v1.5" | |
) | |
# Create a service context | |
service_context = ServiceContext.from_defaults( | |
llm=llm, | |
embed_model=embed_model | |
) | |
# Define the directory for persistent storage and data | |
PERSIST_DIR = "./db" | |
DATA_DIR = "data" | |
# Ensure data directory exists | |
os.makedirs(DATA_DIR, exist_ok=True) | |
os.makedirs(PERSIST_DIR, exist_ok=True) | |
def displayPDF(file): | |
base64_pdf = base64.b64encode(file.read()).decode('utf-8') | |
return f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>' | |
def data_ingestion(): | |
documents = SimpleDirectoryReader(DATA_DIR).load_data() | |
storage_context = StorageContext.from_defaults() | |
index = VectorStoreIndex.from_documents(documents, service_context=service_context) | |
index.storage_context.persist(persist_dir=PERSIST_DIR) | |
def handle_query(query): | |
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) | |
index = load_index_from_storage(storage_context, service_context=service_context) | |
chat_text_qa_msgs = [ | |
( | |
"user", | |
"""You are a Q&A assistant named CHATTO, created by Suriya. You have a specific response programmed for when users specifically ask about your creator, Suriya. The response is: "I was created by Suriya, an enthusiast in Artificial Intelligence. He is dedicated to solving complex problems and delivering innovative solutions. With a strong focus on machine learning, deep learning, Python, generative AI, NLP, and computer vision, Suriya is passionate about pushing the boundaries of AI to explore new possibilities." For all other inquiries, your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, kindly advise the user to ask questions within the context of the document. | |
Context: | |
{context_str} | |
Question: | |
{query_str} | |
""" | |
) | |
] | |
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) | |
query_engine = index.as_query_engine(text_qa_template=text_qa_template) | |
answer = query_engine.query(query) | |
if hasattr(answer, 'response'): | |
return answer.response | |
elif isinstance(answer, dict) and 'response' in answer: | |
return answer['response'] | |
else: | |
return "Sorry, I couldn't find an answer." | |
def process_file(file): | |
if file is None: | |
return "Please upload a PDF file." | |
try: | |
with tempfile.NamedTemporaryFile(delete=False) as temp_file: | |
temp_file.write(file.read()) | |
temp_path = Path(temp_file.name) | |
# Copy the file to the DATA_DIR | |
dest_path = Path(DATA_DIR) / file.name | |
dest_path.parent.mkdir(parents=True, exist_ok=True) | |
temp_path.replace(dest_path) | |
# Process the uploaded PDF | |
data_ingestion() | |
return f"PDF '{file.name}' processed successfully. You can now ask questions about its content.", displayPDF(file) | |
except Exception as e: | |
return f"An error occurred while processing the file: {str(e)}", None | |
def chat_function(message, history): | |
response = handle_query(message) | |
history.append((message, response)) | |
return history, history | |
with gr.Blocks() as demo: | |
gr.Markdown("# (PDF) Information and Inference🗞️") | |
gr.Markdown("Retrieval-Augmented Generation") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
file_output = gr.Textbox(label="Upload Status") | |
file_display = gr.HTML() | |
upload_button = gr.UploadButton("Upload PDF", file_types=[".pdf"]) | |
with gr.Column(scale=2): | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox(label="Ask me anything about the content of the PDF:") | |
clear = gr.Button("Clear") | |
upload_button.upload(process_file, upload_button, [file_output, file_display]) | |
msg.submit(chat_function, [msg, chatbot], [chatbot, chatbot]) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
if __name__ == "__main__": | |
demo.launch() | |