import gradio as gr from llama_index.core import ( StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, ) from llama_index.llms.huggingface import HuggingFaceInferencePipeline from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core import Settings import os import tempfile from pathlib import Path import logging # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Define the directory for persistent storage and data PERSIST_DIR = "./db" DATA_DIR = "data" # Ensure data directory exists os.makedirs(DATA_DIR, exist_ok=True) os.makedirs(PERSIST_DIR, exist_ok=True) # Configure the Llama index settings Settings.embed_model = HuggingFaceEmbedding( model_name="BAAI/bge-small-en-v1.5" ) def data_ingestion(): try: documents = SimpleDirectoryReader(DATA_DIR).load_data() if not documents: logger.warning("No documents loaded from the data directory.") return False storage_context = StorageContext.from_defaults() index = VectorStoreIndex.from_documents(documents) index.storage_context.persist(persist_dir=PERSIST_DIR) return True except Exception as e: logger.error(f"Error during data ingestion: {str(e)}") return False def handle_query(query): try: storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) index = load_index_from_storage(storage_context) chat_text_qa_msgs = [ ( "user", """You are a Q&A assistant named EazyPeazy. Your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, kindly advise the user to ask questions within the context of the document. Context: {context_str} Question: {query_str} """ ) ] text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) query_engine = index.as_query_engine(text_qa_template=text_qa_template) answer = query_engine.query(query) if hasattr(answer, 'response'): return answer.response elif isinstance(answer, dict) and 'response' in answer: return answer['response'] else: return "Sorry, I couldn't find an answer." except Exception as e: logger.error(f"Error handling query: {str(e)}") return "An error occurred while processing your query. Please try again." def process_file(file): if file is None: return "Please upload a PDF file." try: temp_dir = tempfile.mkdtemp() temp_path = Path(temp_dir) / "uploaded.pdf" with open(temp_path, "wb") as f: f.write(file.read()) # Copy the file to the DATA_DIR dest_path = Path(DATA_DIR) / "saved_pdf.pdf" dest_path.parent.mkdir(parents=True, exist_ok=True) temp_path.replace(dest_path) # Process the uploaded PDF if data_ingestion(): return "PDF processed successfully. You can now ask questions about its content." else: return "Failed to process the PDF. Please try uploading again." except Exception as e: logger.error(f"Error processing file: {str(e)}") return f"An error occurred while processing the file: {str(e)}" def chat_function(message, history): response = handle_query(message) history.append((message, response)) return history with gr.Blocks() as demo: gr.Markdown("# (PDF) Information and Inference🗞️") gr.Markdown("Retrieval-Augmented Generation") with gr.Row(): with gr.Column(scale=1): file_output = gr.Textbox(label="Upload Status") upload_button = gr.UploadButton("Upload PDF", file_types=[".pdf"]) with gr.Column(scale=2): chatbot = gr.Chatbot() msg = gr.Textbox(label="Ask me anything about the content of the PDF:") clear = gr.Button("Clear") upload_button.upload(process_file, upload_button, file_output) msg.submit(chat_function, [msg, chatbot], chatbot) clear.click(lambda: None, None, chatbot, queue=False) if __name__ == "__main__": demo.launch()