import gradio as gr import langchain.llms as llms import langchain.llms.prompts as prompts import langchain.pipelines as pipelines from langchain.llms.responses import ResponseItem def process_pdf(pdf_file): """Processes the uploaded PDF using a pre-trained information extraction pipeline. Args: pdf_file (bytes): The uploaded PDF file content. Returns: dict: A dictionary containing the extracted information from the PDF. """ # Replace with your preferred information extraction pipeline # (e.g., Camelot, PyMuPDF, PDFMiner.Six) extracted_data = extract_information_from_pdf(pdf_file) return extracted_data def answer_question(question, context, llm): """Answers the user's question using the provided context and LLaMA3 model. Args: question (str): The user's question. context (dict): The extracted information from the PDF. llm (llms.BaseLLM): The LLaMA3 language model instance. Returns: ResponseItem: A ResponseItem object containing the answer, score, and retrieval. """ # Replace with your preferred RAG prompt template # (e.g., "The document says [RETRIEVAL]. Can you answer this question based on it: {question}?") prompt = prompts.get_rag_answering_prompt(question, context, retrieval_template="") response = llm.run(prompt, wait_for_sequences=True) return response[0] def chatbot(pdf_file, message, chat_history): """Handles user interaction, processes PDF, answers questions, and maintains chat history. Args: pdf_file (bytes, optional): The uploaded PDF file content (if applicable). message (str): The user's message (question). chat_history (list): A list of previous messages. Returns: list: An updated chat history with the chatbot's response. """ if pdf_file is not None: context = process_pdf(pdf_file) chat_history.append(f"**You uploaded a PDF.**") if message: # Access the LLaMA3 model (replace with your setup) llm = llms.get_llm("facebook/bart-base") # Example LLaMA3 model (replace with your access) response = answer_question(message, context, llm) chat_history.append(f"**User:** {message}") chat_history.append(f"**Chatbot:** {response.generated_text}") return chat_history # Gradio interface setup interface = gr.Interface( fn=chatbot, inputs=[ gr.File(type="pdf", label="Upload PDF (optional)"), gr.Textbox(label="Ask a question"), ], outputs=gr.Textbox(multiline=True), title="PDF Q&A Chatbot with LLaMA3", description="Ask questions about the uploaded PDF or provide an empty file to use example content.", ) interface.launch()