import gradio as gr from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate from llama_index.llms.huggingface import HuggingFaceInferenceAPI from dotenv import load_dotenv from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core import Settings import os import tempfile # Load environment variables load_dotenv() # Configure the Llama index settings Settings.llm = HuggingFaceInferenceAPI( model_name="google/gemma-1.1-7b-it", tokenizer_name="google/gemma-1.1-7b-it", context_window=3000, token=os.getenv("HF_TOKEN"), max_new_tokens=512, generate_kwargs={"temperature": 0.1}, ) Settings.embed_model = HuggingFaceEmbedding( model_name="BAAI/bge-small-en-v1.5" ) # Define the directory for persistent storage and data PERSIST_DIR = "./db" DATA_DIR = "data" # Ensure data directory exists os.makedirs(DATA_DIR, exist_ok=True) os.makedirs(PERSIST_DIR, exist_ok=True) def data_ingestion(): documents = SimpleDirectoryReader(DATA_DIR).load_data() storage_context = StorageContext.from_defaults() index = VectorStoreIndex.from_documents(documents) index.storage_context.persist(persist_dir=PERSIST_DIR) def handle_query(query): storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) index = load_index_from_storage(storage_context) chat_text_qa_msgs = [ ( "user", """You are a Q&A assistant named EazyPeazy, For all other inquiries, your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, kindly advise the user to ask questions within the context of the document. Context: {context_str} Question: {query_str} """ ) ] text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) query_engine = index.as_query_engine(text_qa_template=text_qa_template) answer = query_engine.query(query) if hasattr(answer, 'response'): return answer.response elif isinstance(answer, dict) and 'response' in answer: return answer['response'] else: return "Sorry, I couldn't find an answer." def process_file(file): if file is None: return "Please upload a PDF file." temp_dir = tempfile.mkdtemp() temp_path = os.path.join(temp_dir, "uploaded.pdf") with open(temp_path, "wb") as f: f.write(file.read()) # Copy the file to the DATA_DIR os.makedirs(DATA_DIR, exist_ok=True) dest_path = os.path.join(DATA_DIR, "saved_pdf.pdf") os.replace(temp_path, dest_path) # Process the uploaded PDF data_ingestion() return "PDF processed successfully. You can now ask questions about its content." def chatbot(message, history): response = handle_query(message) history.append((message, response)) return history, "" # Gradio interface with gr.Blocks() as demo: gr.Markdown("# (PDF) Information and Inference🗞️") gr.Markdown("Retrieval-Augmented Generation") with gr.Row(): with gr.Column(scale=1): file_output = gr.Textbox(label="Upload Status") upload_button = gr.UploadButton("Upload PDF", file_types=[".pdf"]) upload_button.upload(process_file, upload_button, file_output) with gr.Column(scale=2): chatbot = gr.Chatbot( [], elem_id="chatbot", bubble_full_width=False, ) msg = gr.Textbox(label="Ask me anything about the content of the PDF:") clear = gr.Button("Clear") msg.submit(chatbot, [msg, chatbot], [chatbot, msg]) clear.click(lambda: None, None, chatbot, queue=False) if __name__ == "__main__": demo.launch()