Spaces:
Sleeping
Sleeping
| import torch | |
| import torch.nn as nn | |
| from bn import batch_norm | |
| from cbam import CBAM | |
| class residual(nn.Module): | |
| def __init__(self, inp, out, stride=1): | |
| super().__init__() | |
| self.bn1 = batch_norm(inp) | |
| self.conv1 = nn.Conv2d(inp, out, kernel_size=3, padding=1, stride=stride) | |
| self.bn2 = batch_norm(out) | |
| self.conv2 = nn.Conv2d(out, out, kernel_size=3, padding=1, stride=1) | |
| # skip connection | |
| self.concat = nn.Conv2d(inp, out, kernel_size=1, padding=0, stride=stride) | |
| # Add CBAM | |
| self.cbam = CBAM(out) | |
| def forward(self, input): | |
| x = self.bn1(input) | |
| x = self.conv1(x) | |
| x = self.bn2(x) | |
| x = self.conv2(x) | |
| x = self.cbam(x) # Apply CBAM | |
| skip = self.concat(input) | |
| skip = x + skip | |
| return skip |