Spaces:
Sleeping
Sleeping
| import torch | |
| import torch.nn as nn | |
| from residual import residual | |
| class decoder(nn.Module): | |
| def __init__(self, inp, out): | |
| super().__init__() | |
| self.upsample = nn.Upsample(scale_factor=2, mode = 'bilinear', align_corners = True) | |
| self.block = residual(inp+out, out) | |
| def forward(self, x, skip): | |
| x = self.upsample(x) | |
| x = torch.cat([x, skip], axis = 1) | |
| x = self.block(x) | |
| return x |