Spaces:
Running
Running
path to model change
Browse files
app.py
CHANGED
|
@@ -14,7 +14,7 @@ from transformers import AutoModel, AutoTokenizer
|
|
| 14 |
model_name = "Pendrokar/TorchMoji"
|
| 15 |
model = AutoModel.from_pretrained(model_name, cache_dir="~/.cache/huggingface/hub/")
|
| 16 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 17 |
-
model_path =
|
| 18 |
vocab_path = './' + model_name + "/vocabulary.json"
|
| 19 |
|
| 20 |
def top_elements(array, k):
|
|
@@ -29,7 +29,7 @@ model = torchmoji_emojis(model_path)
|
|
| 29 |
|
| 30 |
def predict(deepmoji_analysis):
|
| 31 |
output_text = "\n"
|
| 32 |
-
tokenized, _, _ = st.tokenize_sentences(
|
| 33 |
prob = model(tokenized)
|
| 34 |
|
| 35 |
for prob in [prob]:
|
|
@@ -37,7 +37,7 @@ def predict(deepmoji_analysis):
|
|
| 37 |
# correspond to the mapping in emoji_overview.png
|
| 38 |
# at the root of the torchMoji repo.
|
| 39 |
scores = []
|
| 40 |
-
for i, t in enumerate(
|
| 41 |
t_tokens = tokenized[i]
|
| 42 |
t_score = [t]
|
| 43 |
t_prob = prob[i]
|
|
|
|
| 14 |
model_name = "Pendrokar/TorchMoji"
|
| 15 |
model = AutoModel.from_pretrained(model_name, cache_dir="~/.cache/huggingface/hub/")
|
| 16 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 17 |
+
model_path = "~/.cache/huggingface/hub/pytorch_model.bin"
|
| 18 |
vocab_path = './' + model_name + "/vocabulary.json"
|
| 19 |
|
| 20 |
def top_elements(array, k):
|
|
|
|
| 29 |
|
| 30 |
def predict(deepmoji_analysis):
|
| 31 |
output_text = "\n"
|
| 32 |
+
tokenized, _, _ = st.tokenize_sentences([deepmoji_analysis])
|
| 33 |
prob = model(tokenized)
|
| 34 |
|
| 35 |
for prob in [prob]:
|
|
|
|
| 37 |
# correspond to the mapping in emoji_overview.png
|
| 38 |
# at the root of the torchMoji repo.
|
| 39 |
scores = []
|
| 40 |
+
for i, t in enumerate([deepmoji_analysis]):
|
| 41 |
t_tokens = tokenized[i]
|
| 42 |
t_score = [t]
|
| 43 |
t_prob = prob[i]
|