Spaces:
Running
Running
| import torch | |
| import torch.nn.functional as F | |
| import torch.nn as nn | |
| from torch.nn import Conv1d, AvgPool1d, Conv2d | |
| from torch.nn.utils import weight_norm, spectral_norm | |
| from .utils import get_padding | |
| LRELU_SLOPE = 0.1 | |
| def stft(x, fft_size, hop_size, win_length, window): | |
| """Perform STFT and convert to magnitude spectrogram. | |
| Args: | |
| x (Tensor): Input signal tensor (B, T). | |
| fft_size (int): FFT size. | |
| hop_size (int): Hop size. | |
| win_length (int): Window length. | |
| window (str): Window function type. | |
| Returns: | |
| Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1). | |
| """ | |
| x_stft = torch.stft(x, fft_size, hop_size, win_length, window, return_complex=True) | |
| real = x_stft[..., 0] | |
| imag = x_stft[..., 1] | |
| return torch.abs(x_stft).transpose(2, 1) | |
| class SpecDiscriminator(nn.Module): | |
| """docstring for Discriminator.""" | |
| def __init__( | |
| self, | |
| fft_size=1024, | |
| shift_size=120, | |
| win_length=600, | |
| window="hann_window", | |
| use_spectral_norm=False, | |
| ): | |
| super(SpecDiscriminator, self).__init__() | |
| norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
| self.fft_size = fft_size | |
| self.shift_size = shift_size | |
| self.win_length = win_length | |
| self.window = getattr(torch, window)(win_length) | |
| self.discriminators = nn.ModuleList( | |
| [ | |
| norm_f(nn.Conv2d(1, 32, kernel_size=(3, 9), padding=(1, 4))), | |
| norm_f( | |
| nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4)) | |
| ), | |
| norm_f( | |
| nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4)) | |
| ), | |
| norm_f( | |
| nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4)) | |
| ), | |
| norm_f( | |
| nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) | |
| ), | |
| ] | |
| ) | |
| self.out = norm_f(nn.Conv2d(32, 1, 3, 1, 1)) | |
| def forward(self, y): | |
| fmap = [] | |
| y = y.squeeze(1) | |
| y = stft( | |
| y, | |
| self.fft_size, | |
| self.shift_size, | |
| self.win_length, | |
| self.window.to(y.get_device()), | |
| ) | |
| y = y.unsqueeze(1) | |
| for i, d in enumerate(self.discriminators): | |
| y = d(y) | |
| y = F.leaky_relu(y, LRELU_SLOPE) | |
| fmap.append(y) | |
| y = self.out(y) | |
| fmap.append(y) | |
| return torch.flatten(y, 1, -1), fmap | |
| class MultiResSpecDiscriminator(torch.nn.Module): | |
| def __init__( | |
| self, | |
| fft_sizes=[1024, 2048, 512], | |
| hop_sizes=[120, 240, 50], | |
| win_lengths=[600, 1200, 240], | |
| window="hann_window", | |
| ): | |
| super(MultiResSpecDiscriminator, self).__init__() | |
| self.discriminators = nn.ModuleList( | |
| [ | |
| SpecDiscriminator(fft_sizes[0], hop_sizes[0], win_lengths[0], window), | |
| SpecDiscriminator(fft_sizes[1], hop_sizes[1], win_lengths[1], window), | |
| SpecDiscriminator(fft_sizes[2], hop_sizes[2], win_lengths[2], window), | |
| ] | |
| ) | |
| def forward(self, y, y_hat): | |
| y_d_rs = [] | |
| y_d_gs = [] | |
| fmap_rs = [] | |
| fmap_gs = [] | |
| for i, d in enumerate(self.discriminators): | |
| y_d_r, fmap_r = d(y) | |
| y_d_g, fmap_g = d(y_hat) | |
| y_d_rs.append(y_d_r) | |
| fmap_rs.append(fmap_r) | |
| y_d_gs.append(y_d_g) | |
| fmap_gs.append(fmap_g) | |
| return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
| class DiscriminatorP(torch.nn.Module): | |
| def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): | |
| super(DiscriminatorP, self).__init__() | |
| self.period = period | |
| norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
| self.convs = nn.ModuleList( | |
| [ | |
| norm_f( | |
| Conv2d( | |
| 1, | |
| 32, | |
| (kernel_size, 1), | |
| (stride, 1), | |
| padding=(get_padding(5, 1), 0), | |
| ) | |
| ), | |
| norm_f( | |
| Conv2d( | |
| 32, | |
| 128, | |
| (kernel_size, 1), | |
| (stride, 1), | |
| padding=(get_padding(5, 1), 0), | |
| ) | |
| ), | |
| norm_f( | |
| Conv2d( | |
| 128, | |
| 512, | |
| (kernel_size, 1), | |
| (stride, 1), | |
| padding=(get_padding(5, 1), 0), | |
| ) | |
| ), | |
| norm_f( | |
| Conv2d( | |
| 512, | |
| 1024, | |
| (kernel_size, 1), | |
| (stride, 1), | |
| padding=(get_padding(5, 1), 0), | |
| ) | |
| ), | |
| norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))), | |
| ] | |
| ) | |
| self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | |
| def forward(self, x): | |
| fmap = [] | |
| # 1d to 2d | |
| b, c, t = x.shape | |
| if t % self.period != 0: # pad first | |
| n_pad = self.period - (t % self.period) | |
| x = F.pad(x, (0, n_pad), "reflect") | |
| t = t + n_pad | |
| x = x.view(b, c, t // self.period, self.period) | |
| for l in self.convs: | |
| x = l(x) | |
| x = F.leaky_relu(x, LRELU_SLOPE) | |
| fmap.append(x) | |
| x = self.conv_post(x) | |
| fmap.append(x) | |
| x = torch.flatten(x, 1, -1) | |
| return x, fmap | |
| class MultiPeriodDiscriminator(torch.nn.Module): | |
| def __init__(self): | |
| super(MultiPeriodDiscriminator, self).__init__() | |
| self.discriminators = nn.ModuleList( | |
| [ | |
| DiscriminatorP(2), | |
| DiscriminatorP(3), | |
| DiscriminatorP(5), | |
| DiscriminatorP(7), | |
| DiscriminatorP(11), | |
| ] | |
| ) | |
| def forward(self, y, y_hat): | |
| y_d_rs = [] | |
| y_d_gs = [] | |
| fmap_rs = [] | |
| fmap_gs = [] | |
| for i, d in enumerate(self.discriminators): | |
| y_d_r, fmap_r = d(y) | |
| y_d_g, fmap_g = d(y_hat) | |
| y_d_rs.append(y_d_r) | |
| fmap_rs.append(fmap_r) | |
| y_d_gs.append(y_d_g) | |
| fmap_gs.append(fmap_g) | |
| return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
| class WavLMDiscriminator(nn.Module): | |
| """docstring for Discriminator.""" | |
| def __init__( | |
| self, slm_hidden=768, slm_layers=13, initial_channel=64, use_spectral_norm=False | |
| ): | |
| super(WavLMDiscriminator, self).__init__() | |
| norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
| self.pre = norm_f( | |
| Conv1d(slm_hidden * slm_layers, initial_channel, 1, 1, padding=0) | |
| ) | |
| self.convs = nn.ModuleList( | |
| [ | |
| norm_f( | |
| nn.Conv1d( | |
| initial_channel, initial_channel * 2, kernel_size=5, padding=2 | |
| ) | |
| ), | |
| norm_f( | |
| nn.Conv1d( | |
| initial_channel * 2, | |
| initial_channel * 4, | |
| kernel_size=5, | |
| padding=2, | |
| ) | |
| ), | |
| norm_f( | |
| nn.Conv1d(initial_channel * 4, initial_channel * 4, 5, 1, padding=2) | |
| ), | |
| ] | |
| ) | |
| self.conv_post = norm_f(Conv1d(initial_channel * 4, 1, 3, 1, padding=1)) | |
| def forward(self, x): | |
| x = self.pre(x) | |
| fmap = [] | |
| for l in self.convs: | |
| x = l(x) | |
| x = F.leaky_relu(x, LRELU_SLOPE) | |
| fmap.append(x) | |
| x = self.conv_post(x) | |
| x = torch.flatten(x, 1, -1) | |
| return x | |