Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -56,10 +56,9 @@ random_seed = 42
|
|
56 |
video_length = 201
|
57 |
W = 1024
|
58 |
H = W
|
59 |
-
#device = "cuda" if torch.cuda.is_available() else "cpu"
|
60 |
|
61 |
def get_pipe_image_and_video_predictor():
|
62 |
-
device="
|
63 |
vae = AutoencoderKLWan.from_pretrained("./model/vae", torch_dtype=torch.float16)
|
64 |
transformer = Transformer3DModel.from_pretrained("./model/transformer", torch_dtype=torch.float16)
|
65 |
scheduler = UniPCMultistepScheduler.from_pretrained("./model/scheduler")
|
@@ -248,6 +247,10 @@ def track_video(n_frames, video_state):
|
|
248 |
images = [cv2.resize(img, (W_, H_)) for img in images]
|
249 |
video_state["origin_images"] = images
|
250 |
images = np.array(images)
|
|
|
|
|
|
|
|
|
251 |
inference_state = video_predictor.init_state(images=images/255, device="cuda")
|
252 |
video_state["inference_state"] = inference_state
|
253 |
|
|
|
56 |
video_length = 201
|
57 |
W = 1024
|
58 |
H = W
|
|
|
59 |
|
60 |
def get_pipe_image_and_video_predictor():
|
61 |
+
device="cpu"
|
62 |
vae = AutoencoderKLWan.from_pretrained("./model/vae", torch_dtype=torch.float16)
|
63 |
transformer = Transformer3DModel.from_pretrained("./model/transformer", torch_dtype=torch.float16)
|
64 |
scheduler = UniPCMultistepScheduler.from_pretrained("./model/scheduler")
|
|
|
247 |
images = [cv2.resize(img, (W_, H_)) for img in images]
|
248 |
video_state["origin_images"] = images
|
249 |
images = np.array(images)
|
250 |
+
|
251 |
+
video_predictor = build_sam2_video_predictor(config, sam2_checkpoint, device="cuda")
|
252 |
+
|
253 |
+
|
254 |
inference_state = video_predictor.init_state(images=images/255, device="cuda")
|
255 |
video_state["inference_state"] = inference_state
|
256 |
|