File size: 5,839 Bytes
90a6c5f
5a0a701
 
90a6c5f
7421eb7
c299a3b
 
 
 
 
 
 
 
 
 
 
 
 
 
7421eb7
0941b5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f2a292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0941b5e
 
5a0a701
7421eb7
 
50f339f
7421eb7
53d94e8
 
6da5cf7
 
90a6c5f
7421eb7
5a0a701
 
 
7421eb7
 
c5ff652
 
 
 
7421eb7
c5ff652
0488555
7421eb7
 
514acd5
0941b5e
 
514acd5
0941b5e
 
 
 
7421eb7
c299a3b
 
0941b5e
 
c299a3b
0941b5e
 
c299a3b
 
 
7421eb7
514acd5
90a6c5f
5a0a701
7421eb7
90a6c5f
7421eb7
4d9b242
90a6c5f
7421eb7
514acd5
dcbc569
7421eb7
4d9b242
 
dcbc569
4d9b242
 
 
dcbc569
 
7421eb7
dcbc569
 
a178b93
514acd5
dcbc569
280aeca
a178b93
7421eb7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import streamlit as st
import pandas as pd
import plotly.express as px

# Function to assign color based on count
def assign_color(count):
    if count <= 10:
        return '1-10'
    elif count <= 50:
        return '10-50'
    elif count <= 100:
        return '50-100'
    elif count <= 500:
        return '100-500'
    elif count <= 1000:
        return '500-1000'
    else:
        return '>1000'

# Country mapping dictionary
country_mapping = {
    'United States': 'USA',
    'United Kingdom': 'GBR',
    'France': 'FRA',
    'Canada': 'CAN',
    'Germany': 'DEU',
    'Japan': 'JPN',
    'India': 'IND',
    'Australia': 'AUS',
    'China': 'CHN',
    'Italy': 'ITA',
    'Spain': 'ESP',
    'Mexico': 'MEX',
    'Hong Kong': 'HKG',
    'Sweden': 'SWE',
    'Denmark': 'DNK',
    'New Zealand': 'NZL',
    'Belgium': 'BEL',
    'South Korea': 'KOR',
    'Ireland': 'IRL',
    'Czech Republic': 'CZE',
    'Switzerland': 'CHE',
    'Hungary': 'HUN',
    'Norway': 'NOR',
    'United Arab Emirates': 'ARE',
    'Netherlands': 'NLD',
    'South Africa': 'ZAF',
    'Poland': 'POL',
    'Austria': 'AUT',
    'Turkey': 'TUR',
    'Brazil': 'BRA',
    'Russia': 'RUS',
    'Argentina': 'ARG',
    'Singapore': 'SGP',
    'Thailand': 'THA',
    'Portugal': 'PRT',
    'Greece': 'GRC',
    'Egypt': 'EGY',
    'Vietnam': 'VNM',
    'Malaysia': 'MYS',
    'Philippines': 'PHL',
    'Taiwan': 'TWN',
    'Israel': 'ISR',
    'Saudi Arabia': 'SAU',
    'Indonesia': 'IDN',
    'Pakistan': 'PAK',
    'Iran': 'IRN',
    'Iraq': 'IRQ',
    'Syria': 'SYR',
    'Lebanon': 'LBN',
    'Jordan': 'JOR',
    'Qatar': 'QAT',
    'Oman': 'OMN',
    'Kuwait': 'KWT',
    'Bahrain': 'BHR',
    'Yemen': 'YEM',
    'Morocco': 'MAR',
    'Tunisia': 'TUN',
    'Algeria': 'DZA',
    'Libya': 'LBY',
    'Sudan': 'SDN',
    'Kenya': 'KEN',
    'Nigeria': 'NGA',
    'Ghana': 'GHA',
    'Ethiopia': 'ETH',
    'Botswana': 'BWA',
    'Namibia': 'NAM',
    'Zimbabwe': 'ZWE',
    'Zambia': 'ZMB',
    'Uganda': 'UGA',
    'Rwanda': 'RWA',
    'Burundi': 'BDI',
    'Tanzania': 'TZA',
    'Angola': 'AGO',
    'Mozambique': 'MOZ',
    'Madagascar': 'MDG',
    'Mauritius': 'MUS',
    'Somalia': 'SOM',
    'Somaliland': 'SOM',
    'Senegal': 'SEN',
    'Ivory Coast': 'CIV',
    'Cameroon': 'CMR',
    'Benin': 'BEN',
    'Togo': 'TGO',
    'Gambia': 'GMB',
    'Guinea': 'GIN',
    'Guinea-Bissau': 'GNB',
    'Equatorial Guinea': 'GNQ',
    'Gabon': 'GAB',
    'Congo': 'COG',
    'Democratic Republic of the Congo': 'COD',
    'Central African Republic': 'CAF',
    'Chad': 'TCD',
    'Niger': 'NER',
    'Mali': 'MLI',
    'Burkina Faso': 'BFA',
    'Mauritania': 'MRT',
    'Western Sahara': 'ESH',
    'Sierra Leone': 'SLE',
    'Liberia': 'LBR',
    'Cape Verde': 'CPV',
    'Seychelles': 'SYC',
    'Comoros': 'COM',
    'Maldives': 'MDV'
}

# Load your dataframes
df_movies = pd.read_csv('movies.csv')
df_tv_series = pd.read_csv('tv_series.csv')

# Splitting genres and countries
df_movies['genre'] = df_movies['genre'].str.split(',')
df_tv_series['genre'] = df_tv_series['genre'].str.split(',')
df_movies['country'] = df_movies['country'].str.split(',')
df_tv_series['country'] = df_tv_series['country'].str.split(',')

# Function to create treemap
def create_treemap(df, title):
    fig = px.treemap(df, path=['parentalguide'], title=title)
    return fig

# Function to create genre bar chart
def create_genre_bar_chart(df, title):
    df_exploded = df.explode('genre')
    genre_counts = df_exploded['genre'].value_counts().reset_index()
    genre_counts.columns = ['genre', 'count']
    genre_counts = genre_counts.head(10)  # Top 10 genres
    fig = px.bar(genre_counts, x='count', y='genre', orientation='h', title=title)
    return fig

# Function to create choropleth map
def create_country_map(df, title):
    df_exploded = df.explode('country')
    country_counts = df_exploded['country'].value_counts().reset_index()
    country_counts.columns = ['country', 'count']
    
    # Map country names to ISO codes
    country_counts['country'] = country_counts['country'].map(country_mapping)
    
    # Assign color based on count
    country_counts['color'] = country_counts['count'].apply(assign_color)
    
    fig = px.choropleth(country_counts, 
                        locations="country",
                        color="color",
                        hover_name="country",
                        title=title,
                        projection="natural earth",
                        color_discrete_sequence=['#7FFF00', '#FFD700', '#FFA500', '#FF4500', '#DC143C', '#8B0000'],
                        category_orders={"color": ['1-10', '10-50', '50-100', '100-500', '500-1000', '>1000']})
    
    return fig

# Streamlit app
st.title('Parental Guide Analysis')

# Split into two columns for buttons
col1, col2 = st.columns(2)

# Default selection
selection = 'Movies'

# Buttons for Movies and TV Series
with col1:
    if st.button('Movies'):
        selection = 'Movies'

with col2:
    if st.button('TV Series'):
        selection = 'TV Series'

# Display treemap, genre bar chart, and choropleth map based on selection
if selection == 'Movies':
    st.plotly_chart(create_treemap(df_movies, 'Parental Guide - Movies'), use_container_width=True)
    st.plotly_chart(create_genre_bar_chart(df_movies, 'Top 10 Genres - Movies'), use_container_width=True)
    st.plotly_chart(create_country_map(df_movies, 'Global Distribution of Movies'), use_container_width=True)
elif selection == 'TV Series':
    st.plotly_chart(create_treemap(df_tv_series, 'Parental Guide - TV Series'), use_container_width=True)
    st.plotly_chart(create_genre_bar_chart(df_tv_series, 'Top 10 Genres - TV Series'), use_container_width=True)
    st.plotly_chart(create_country_map(df_tv_series, 'Global Distribution of TV Series'), use_container_width=True)