Spaces:
Sleeping
Sleeping
File size: 5,358 Bytes
90a6c5f 5a0a701 90a6c5f 0941b5e 8f2a292 0941b5e 5a0a701 4d9b242 50f339f 53d94e8 6da5cf7 90a6c5f 5a0a701 0941b5e c5ff652 0488555 0941b5e 514acd5 0941b5e 514acd5 0941b5e 514acd5 90a6c5f 5a0a701 90a6c5f 4d9b242 90a6c5f dcbc569 514acd5 dcbc569 4d9b242 dcbc569 4d9b242 dcbc569 a178b93 514acd5 dcbc569 280aeca a178b93 514acd5 0488555 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import streamlit as st
import pandas as pd
import plotly.express as px
country_mapping = {
'United States': 'USA',
'United Kingdom': 'GBR',
'France': 'FRA',
'Canada': 'CAN',
'Germany': 'DEU',
'Japan': 'JPN',
'India': 'IND',
'Australia': 'AUS',
'China': 'CHN',
'Italy': 'ITA',
'Spain': 'ESP',
'Mexico': 'MEX',
'Hong Kong': 'HKG',
'Sweden': 'SWE',
'Denmark': 'DNK',
'New Zealand': 'NZL',
'Belgium': 'BEL',
'South Korea': 'KOR',
'Ireland': 'IRL',
'Czech Republic': 'CZE',
'Switzerland': 'CHE',
'Hungary': 'HUN',
'Norway': 'NOR',
'United Arab Emirates': 'ARE',
'Netherlands': 'NLD',
'South Africa': 'ZAF',
'Poland': 'POL',
'Austria': 'AUT',
'Turkey': 'TUR',
'Brazil': 'BRA',
'Russia': 'RUS',
'Argentina': 'ARG',
'Singapore': 'SGP',
'Thailand': 'THA',
'Portugal': 'PRT',
'Greece': 'GRC',
'Egypt': 'EGY',
'Vietnam': 'VNM',
'Malaysia': 'MYS',
'Philippines': 'PHL',
'Taiwan': 'TWN',
'Israel': 'ISR',
'Saudi Arabia': 'SAU',
'Indonesia': 'IDN',
'Pakistan': 'PAK',
'Iran': 'IRN',
'Iraq': 'IRQ',
'Syria': 'SYR',
'Lebanon': 'LBN',
'Jordan': 'JOR',
'Qatar': 'QAT',
'Oman': 'OMN',
'Kuwait': 'KWT',
'Bahrain': 'BHR',
'Yemen': 'YEM',
'Morocco': 'MAR',
'Tunisia': 'TUN',
'Algeria': 'DZA',
'Libya': 'LBY',
'Sudan': 'SDN',
'Kenya': 'KEN',
'Nigeria': 'NGA',
'Ghana': 'GHA',
'Ethiopia': 'ETH',
'South Africa': 'ZAF',
'Botswana': 'BWA',
'Namibia': 'NAM',
'Zimbabwe': 'ZWE',
'Zambia': 'ZMB',
'Uganda': 'UGA',
'Rwanda': 'RWA',
'Burundi': 'BDI',
'Tanzania': 'TZA',
'Angola': 'AGO',
'Mozambique': 'MOZ',
'Madagascar': 'MDG',
'Mauritius': 'MUS',
'Somalia': 'SOM',
'Somaliland': 'SOM',
'Senegal': 'SEN',
'Ivory Coast': 'CIV',
'Cameroon': 'CMR',
'Benin': 'BEN',
'Togo': 'TGO',
'Gambia': 'GMB',
'Guinea': 'GIN',
'Guinea-Bissau': 'GNB',
'Equatorial Guinea': 'GNQ',
'Gabon': 'GAB',
'Congo': 'COG',
'Democratic Republic of the Congo': 'COD',
'Central African Republic': 'CAF',
'Chad': 'TCD',
'Niger': 'NER',
'Mali': 'MLI',
'Burkina Faso': 'BFA',
'Mauritania': 'MRT',
'Western Sahara': 'ESH',
'Sierra Leone': 'SLE',
'Liberia': 'LBR',
'Cape Verde': 'CPV',
'Seychelles': 'SYC',
'Comoros': 'COM',
'Mauritius': 'MUS',
'Maldives': 'MDV'
}
# Load your dataframes
df_tv_series= pd.read_csv('series_after_cleaning.csv')
df_movies= pd.read_csv('movie_after_cleaning.csv')
df_movies['genre'] = df_movies['genre'].str.split(',')
df_tv_series['genre'] = df_tv_series['genre'].str.split(',')
df_movies['country'] = df_movies['country'].str.split(',')
df_tv_series['country'] = df_tv_series['country'].str.split(',')
# Function to generate treemap
def create_treemap(df, title):
fig = px.treemap(df, path=['parentalguide'], title=title)
return fig
def create_genre_bar_chart(df, title):
# Explode the genre column to count each genre separately
df_exploded = df.explode('genre')
genre_counts = df_exploded['genre'].value_counts().reset_index()
genre_counts.columns = ['genre', 'count']
genre_counts = genre_counts.head(10) # Get top 10 genres
fig = px.bar(genre_counts, x='count', y='genre', orientation='h', title=title)
return fig
def create_country_map(df, title):
# Explode the country column to count each country separately
df_exploded = df.explode('country')
country_counts = df_exploded['country'].value_counts().reset_index()
country_counts.columns = ['country', 'count']
# Map country names to ISO codes
country_counts['country'] = country_counts['country'].map(country_mapping)
fig = px.choropleth(country_counts,
locations="country",
color="count",
hover_name="country",
title=title,
projection="natural earth",
color_continuous_scale='Viridis')
fig.update_layout(template='plotly_dark', font=dict(color='yellow'))
return fig
# Streamlit app
st.title('Parental Guide Treemaps')
# Split into two columns
col1, col2 = st.columns(2)
# Initialize variable for selection
selection = 'Movies'
# Add buttons in each column
with col1:
if st.button('Movies'):
selection = 'Movies'
with col2:
if st.button('TV Series'):
selection = 'TV Series'
# Display the corresponding treemap in the center
if selection == 'Movies':
st.plotly_chart(create_treemap(df_movies, 'Parental Guide - Movies'), use_container_width=True)
st.plotly_chart(create_genre_bar_chart(df_movies, 'Top 10 Genres - Movies'), use_container_width=True)
st.plotly_chart(create_country_map(df_movies, 'Global Distribution of Movies'), use_container_width=True)
elif selection == 'TV Series':
st.plotly_chart(create_treemap(df_tv_series, 'Parental Guide - TV Series'), use_container_width=True)
st.plotly_chart(create_genre_bar_chart(df_tv_series, 'Top 10 Genres - TV Series'), use_container_width=True)
st.plotly_chart(create_country_map(df_tv_series, 'Global Distribution of TV Series'), use_container_width=True)
|