Spaces:
Sleeping
Sleeping
File size: 7,359 Bytes
90a6c5f 5a0a701 f4d93b4 1f5d4a3 f4d93b4 7421eb7 0941b5e 8f2a292 0941b5e f4d93b4 f482baf 50f339f 7421eb7 53d94e8 6da5cf7 90a6c5f 7421eb7 5a0a701 7421eb7 c5ff652 7421eb7 f4d93b4 0488555 7421eb7 514acd5 0941b5e 514acd5 0941b5e 7421eb7 c299a3b 0941b5e c299a3b 0941b5e c299a3b 7421eb7 f4d93b4 514acd5 90a6c5f dee0925 f4d93b4 dee0925 5a0a701 7421eb7 90a6c5f 7421eb7 4d9b242 90a6c5f 7421eb7 514acd5 dcbc569 7421eb7 4d9b242 dcbc569 4d9b242 dcbc569 dee0925 dcbc569 a178b93 dee0925 514acd5 dcbc569 280aeca a178b93 dee0925 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import streamlit as st
import pandas as pd
import plotly.express as px
# Function to assign color based on count
def assign_color(count):
if count <= 10:
return '1-10'
elif count <= 50:
return '10-50'
elif count <= 100:
return '50-100'
elif count <= 500:
return '100-500'
elif count <= 1000:
return '500-1000'
else:
return '>1000'
# Country mapping dictionary
country_mapping = {
'United States': 'USA',
'United Kingdom': 'GBR',
'France': 'FRA',
'Canada': 'CAN',
'Germany': 'DEU',
'Japan': 'JPN',
'India': 'IND',
'Australia': 'AUS',
'China': 'CHN',
'Italy': 'ITA',
'Spain': 'ESP',
'Mexico': 'MEX',
'Hong Kong': 'HKG',
'Sweden': 'SWE',
'Denmark': 'DNK',
'New Zealand': 'NZL',
'Belgium': 'BEL',
'South Korea': 'KOR',
'Ireland': 'IRL',
'Czech Republic': 'CZE',
'Switzerland': 'CHE',
'Hungary': 'HUN',
'Norway': 'NOR',
'United Arab Emirates': 'ARE',
'Netherlands': 'NLD',
'South Africa': 'ZAF',
'Poland': 'POL',
'Austria': 'AUT',
'Turkey': 'TUR',
'Brazil': 'BRA',
'Russia': 'RUS',
'Argentina': 'ARG',
'Singapore': 'SGP',
'Thailand': 'THA',
'Portugal': 'PRT',
'Greece': 'GRC',
'Egypt': 'EGY',
'Vietnam': 'VNM',
'Malaysia': 'MYS',
'Philippines': 'PHL',
'Taiwan': 'TWN',
'Israel': 'ISR',
'Saudi Arabia': 'SAU',
'Indonesia': 'IDN',
'Pakistan': 'PAK',
'Iran': 'IRN',
'Iraq': 'IRQ',
'Syria': 'SYR',
'Lebanon': 'LBN',
'Jordan': 'JOR',
'Qatar': 'QAT',
'Oman': 'OMN',
'Kuwait': 'KWT',
'Bahrain': 'BHR',
'Yemen': 'YEM',
'Morocco': 'MAR',
'Tunisia': 'TUN',
'Algeria': 'DZA',
'Libya': 'LBY',
'Sudan': 'SDN',
'Kenya': 'KEN',
'Nigeria': 'NGA',
'Ghana': 'GHA',
'Ethiopia': 'ETH',
'Botswana': 'BWA',
'Namibia': 'NAM',
'Zimbabwe': 'ZWE',
'Zambia': 'ZMB',
'Uganda': 'UGA',
'Rwanda': 'RWA',
'Burundi': 'BDI',
'Tanzania': 'TZA',
'Angola': 'AGO',
'Mozambique': 'MOZ',
'Madagascar': 'MDG',
'Mauritius': 'MUS',
'Somalia': 'SOM',
'Somaliland': 'SOM',
'Senegal': 'SEN',
'Ivory Coast': 'CIV',
'Cameroon': 'CMR',
'Benin': 'BEN',
'Togo': 'TGO',
'Gambia': 'GMB',
'Guinea': 'GIN',
'Guinea-Bissau': 'GNB',
'Equatorial Guinea': 'GNQ',
'Gabon': 'GAB',
'Congo': 'COG',
'Democratic Republic of the Congo': 'COD',
'Central African Republic': 'CAF',
'Chad': 'TCD',
'Niger': 'NER',
'Mali': 'MLI',
'Burkina Faso': 'BFA',
'Mauritania': 'MRT',
'Western Sahara': 'ESH',
'Sierra Leone': 'SLE',
'Liberia': 'LBR',
'Cape Verde': 'CPV',
'Seychelles': 'SYC',
'Comoros': 'COM',
'Maldives': 'MDV'
}
# Load your dataframes (replace with actual CSV filenames)
df_movies = pd.read_csv('movie_after_cleaning.csv')
df_tv_series = pd.read_csv('series_after_cleaning.csv')
# Splitting genres and countries
df_movies['genre'] = df_movies['genre'].str.split(',')
df_tv_series['genre'] = df_tv_series['genre'].str.split(',')
df_movies['country'] = df_movies['country'].str.split(',')
df_tv_series['country'] = df_tv_series['country'].str.split(',')
# Function to create treemap
def create_treemap(df, title):
fig = px.treemap(df, path=['parentalguide'], title=title)
return fig
# Function to create genre bar chart
def create_genre_bar_chart(df, title):
df_exploded = df.explode('genre')
genre_counts = df_exploded['genre'].value_counts().reset_index()
genre_counts.columns = ['genre', 'count']
genre_counts = genre_counts.head(10) # Top 10 genres
fig = px.bar(genre_counts, x='count', y='genre', orientation='h', title=title,
labels={'count': 'Count', 'genre': 'Genre'},
color_discrete_sequence=['#FFA07A'])
fig.update_traces(marker_line_color='rgb(8,48,107)', marker_line_width=1.5, opacity=0.6)
fig.update_layout(title_font_size=20, title_font_family='Arial', title_font_color='#00308F')
return fig
# Function to create choropleth map
def create_country_map(df, title):
df_exploded = df.explode('country')
country_counts = df_exploded['country'].value_counts().reset_index()
country_counts.columns = ['country', 'count']
# Map country names to ISO codes
country_counts['country'] = country_counts['country'].map(country_mapping)
# Assign color based on count
country_counts['color'] = country_counts['count'].apply(assign_color)
fig = px.choropleth(country_counts,
locations="country",
color="color",
hover_name="country",
title=title,
projection="natural earth",
color_discrete_sequence=['#7FFF00', '#FFD700', '#FFA500', '#FF4500', '#DC143C', '#8B0000'],
category_orders={"color": ['1-10', '10-50', '50-100', '100-500', '500-1000', '>1000']})
fig.update_geos(showcoastlines=True, coastlinecolor="LightBlue", showland=True, landcolor="LightGreen",
showocean=True, oceancolor="LightBlue", showlakes=True, lakecolor="LightBlue",
showrivers=True, rivercolor="LightBlue")
fig.update_layout(title_font_size=20, title_font_family='Arial', title_font_color='#00308F')
return fig
# Function to create rating distribution box chart
def create_rating_box_chart(df, title):
fig = px.box(df, x="rating", points="all", title=title,
labels={'rating': 'Rating'},
boxmean=True,
orientation='h',
color_discrete_sequence=['#FF6347'])
fig.update_traces(marker_line_color='rgb(8,48,107)', marker_line_width=1.5, opacity=0.6)
fig.update_layout(title_font_size=20, title_font_family='Arial', title_font_color='#00308F')
return fig
# Streamlit app
st.title('Parental Guide Analysis')
# Split into two columns for buttons
col1, col2 = st.columns(2)
# Default selection
selection = 'Movies'
# Buttons for Movies and TV Series
with col1:
if st.button('Movies'):
selection = 'Movies'
with col2:
if st.button('TV Series'):
selection = 'TV Series'
# Display treemap, genre bar chart, rating distribution, and choropleth map based on selection
if selection == 'Movies':
st.plotly_chart(create_treemap(df_movies, 'Parental Guide - Movies'), use_container_width=True)
st.plotly_chart(create_genre_bar_chart(df_movies, 'Top 10 Genres - Movies'), use_container_width=True)
st.plotly_chart(create_rating_box_chart(df_movies, 'Rating Distribution - Movies'), use_container_width=True)
st.plotly_chart(create_country_map(df_movies, 'Global Distribution of Movies'), use_container_width=True)
elif selection == 'TV Series':
st.plotly_chart(create_treemap(df_tv_series, 'Parental Guide - TV Series'), use_container_width=True)
st.plotly_chart(create_genre_bar_chart(df_tv_series, 'Top 10 Genres - TV Series'), use_container_width=True)
st.plotly_chart(create_rating_box_chart(df_tv_series, 'Rating Distribution - TV Series'), use_container_width=True)
st.plotly_chart(create_country_map(df_tv_series, 'Global Distribution of TV Series'), use_container_width=True)
|