Spaces:
Sleeping
Sleeping
File size: 7,552 Bytes
90a6c5f 5a0a701 f4d93b4 7421eb7 0941b5e 8f2a292 0941b5e adb5970 f482baf 50f339f 7421eb7 53d94e8 6da5cf7 90a6c5f 7421eb7 5a0a701 7421eb7 0084a36 7421eb7 c5ff652 eeb4dbe adb5970 0488555 7421eb7 514acd5 0941b5e 514acd5 0941b5e adb5970 0941b5e adb5970 7421eb7 514acd5 afb97aa 90a6c5f dee0925 c46b8ca dee0925 5a0a701 adb5970 90a6c5f adb5970 4d9b242 74aed8f eeb4dbe 90a6c5f adb5970 5317a5e adb5970 afb97aa 5317a5e eeb4dbe 0084a36 5317a5e adb5970 afb97aa 5317a5e eeb4dbe 0084a36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import streamlit as st
import pandas as pd
import plotly.express as px
# Country mapping dictionary
country_mapping = {
'United States': 'USA',
'United Kingdom': 'GBR',
'France': 'FRA',
'Canada': 'CAN',
'Germany': 'DEU',
'Japan': 'JPN',
'India': 'IND',
'Australia': 'AUS',
'China': 'CHN',
'Italy': 'ITA',
'Spain': 'ESP',
'Mexico': 'MEX',
'Hong Kong': 'HKG',
'Sweden': 'SWE',
'Denmark': 'DNK',
'New Zealand': 'NZL',
'Belgium': 'BEL',
'South Korea': 'KOR',
'Ireland': 'IRL',
'Czech Republic': 'CZE',
'Switzerland': 'CHE',
'Hungary': 'HUN',
'Norway': 'NOR',
'United Arab Emirates': 'ARE',
'Netherlands': 'NLD',
'South Africa': 'ZAF',
'Poland': 'POL',
'Austria': 'AUT',
'Turkey': 'TUR',
'Brazil': 'BRA',
'Russia': 'RUS',
'Argentina': 'ARG',
'Singapore': 'SGP',
'Thailand': 'THA',
'Portugal': 'PRT',
'Greece': 'GRC',
'Egypt': 'EGY',
'Vietnam': 'VNM',
'Malaysia': 'MYS',
'Philippines': 'PHL',
'Taiwan': 'TWN',
'Israel': 'ISR',
'Saudi Arabia': 'SAU',
'Indonesia': 'IDN',
'Pakistan': 'PAK',
'Iran': 'IRN',
'Iraq': 'IRQ',
'Syria': 'SYR',
'Lebanon': 'LBN',
'Jordan': 'JOR',
'Qatar': 'QAT',
'Oman': 'OMN',
'Kuwait': 'KWT',
'Bahrain': 'BHR',
'Yemen': 'YEM',
'Morocco': 'MAR',
'Tunisia': 'TUN',
'Algeria': 'DZA',
'Libya': 'LBY',
'Sudan': 'SDN',
'Kenya': 'KEN',
'Nigeria': 'NGA',
'Ghana': 'GHA',
'Ethiopia': 'ETH',
'Botswana': 'BWA',
'Namibia': 'NAM',
'Zimbabwe': 'ZWE',
'Zambia': 'ZMB',
'Uganda': 'UGA',
'Rwanda': 'RWA',
'Burundi': 'BDI',
'Tanzania': 'TZA',
'Angola': 'AGO',
'Mozambique': 'MOZ',
'Madagascar': 'MDG',
'Mauritius': 'MUS',
'Somalia': 'SOM',
'Somaliland': 'SOM',
'Senegal': 'SEN',
'Ivory Coast': 'CIV',
'Cameroon': 'CMR',
'Benin': 'BEN',
'Togo': 'TGO',
'Gambia': 'GMB',
'Guinea': 'GIN',
'Guinea-Bissau': 'GNB',
'Equatorial Guinea': 'GNQ',
'Gabon': 'GAB',
'Congo': 'COG',
'Democratic Republic of the Congo': 'COD',
'Central African Republic': 'CAF',
'Chad': 'TCD',
'Niger': 'NER',
'Mali': 'MLI',
'Burkina Faso': 'BFA',
'Mauritania': 'MRT',
'Western Sahara': 'ESH',
'Sierra Leone': 'SLE',
'Liberia': 'LBR',
'Cape Verde': 'CPV',
'Seychelles': 'SYC',
'Comoros': 'COM',
'Maldives': 'MDV'
}
# Load your dataframes
df_movies = pd.read_csv('movie_after_cleaning.csv')
df_tv_series = pd.read_csv('series_after_cleaning.csv')
# Splitting genres and countries
df_movies['genre'] = df_movies['genre'].str.split(',')
df_tv_series['genre'] = df_tv_series['genre'].str.split(',')
df_movies['country'] = df_movies['country'].str.split(',')
df_tv_series['country'] = df_tv_series['country'].str.split(',')
# Function to create treemap
def create_treemap(df, title):
fig = px.treemap(df, path=['parentalguide'], title=title)
return fig
def create_best_genres_line_chart(df, title):
# Combine genres data from both movies and TV series
df_genres = df.explode('genre')
# Group by year and genre to count occurrences
genre_counts = df_genres.groupby(['year', 'genre']).size().reset_index(name='count')
# Find the most popular genre by count for each year
idx = genre_counts.groupby(['year'])['count'].transform(max) == genre_counts['count']
best_genres = genre_counts[idx]
# Plotly line chart for best genres over the years
fig_best_genres = px.line(best_genres, x='year', y='count', color='genre', title=title)
fig_best_genres.update_layout(xaxis_title='Year', yaxis_title='Number of Works', legend_title='Genre')
return fig_best_genres
# Function to create genre bar chart
def create_genre_bar_chart(df, title):
df_exploded = df.explode('genre')
genre_counts = df_exploded['genre'].value_counts().reset_index()
genre_counts.columns = ['genre', 'count']
genre_counts = genre_counts.head(10).sort_values('count', ascending=True) # Top 10 genres sorted with the largest on top
fig = px.bar(genre_counts, x='count', y='genre', orientation='h', title=title)
return fig
# Function to create choropleth map
def create_country_map(df, title):
df_exploded = df.explode('country')
country_counts = df_exploded['country'].value_counts().reset_index()
country_counts.columns = ['country', 'count']
# Map country names to ISO codes
country_counts['country'] = country_counts['country'].map(country_mapping)
fig = px.choropleth(country_counts,
locations="country",
color="count",
hover_name="country",
title=title,
projection="natural earth")
return fig
def display_summary_metrics(df):
num_works = len(df)
num_languages = df['language'].nunique()
num_countries = df.explode('country')['country'].nunique()
num_votes = df['votes'].sum()
col1, col2, col3, col4 = st.columns(4)
col1.metric("Number of Works", num_works)
col2.metric("Number of Languages", num_languages)
col3.metric("Number of Countries", num_countries)
col4.metric("Number of Votes", num_votes)
# Function to create rating distribution box chart
def create_rating_box_chart(df, title):
fig = px.box(df, x="rating", title=title)
fig.update_traces(marker=dict(opacity=0.6)) # Show points by default
return fig
# Streamlit app
st.title('Parental Guide Analysis')
# Display two charts per row
col1, col2 = st.columns(2)
selection_movies = col1.button('Movies')
selection_tv_series = col2.button('TV Series')
if not selection_movies and not selection_tv_series:
selection_movies = True
# Displaying charts in a customized layout based on selection
if selection_movies:
st.subheader('Movies')
display_summary_metrics(df_movies)
col1_1, col1_2 = st.columns(2)
with col1_1:
st.plotly_chart(create_treemap(df_movies, 'Parental Guide - Movies'), use_container_width=True)
with col1_2:
st.plotly_chart(create_genre_bar_chart(df_movies, 'Top 10 Genres - Movies'), use_container_width=True)
col2_1, col2_2 = st.columns(2)
with col2_1:
st.plotly_chart(create_country_map(df_movies, 'Global Distribution of Movies'), use_container_width=True)
with col2_2:
st.plotly_chart(create_rating_box_chart(df_movies, 'Rating Distribution - Movies'), use_container_width=True)
st.plotly_chart(create_best_genres_line_chart(df_movies, 'Best Genres Over the Years - Movies'), use_container_width=True)
elif selection_tv_series:
st.subheader('TV Series')
display_summary_metrics(df_tv_series)
col1_1, col1_2 = st.columns(2)
with col1_1:
st.plotly_chart(create_treemap(df_tv_series, 'Parental Guide - TV Series'), use_container_width=True)
with col1_2:
st.plotly_chart(create_genre_bar_chart(df_tv_series, 'Top 10 Genres - TV Series'), use_container_width=True)
col2_1, col2_2 = st.columns(2)
with col2_1:
st.plotly_chart(create_country_map(df_tv_series, 'Global Distribution of TV Series'), use_container_width=True)
with col2_2:
st.plotly_chart(create_rating_box_chart(df_tv_series, 'Rating Distribution - TV Series'), use_container_width=True)
st.plotly_chart(create_best_genres_line_chart(df_tv_series, 'Best Genres Over the Years - TV Series'), use_container_width=True) |