Penguni commited on
Commit
c7e58c3
·
verified ·
1 Parent(s): ae06d8a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -4
app.py CHANGED
@@ -129,7 +129,7 @@ def create_genre_wordcloud(conn):
129
  plt.imshow(wordcloud, interpolation='bilinear')
130
  plt.axis('off')
131
  plt.title('Top Genres in IMDb Dataset')
132
- st.pyplot()
133
 
134
  # Function to find best movie of each genre by numVotes * averageRating
135
  def find_best_movies_by_genre(conn):
@@ -157,15 +157,27 @@ def find_best_movies_by_genre(conn):
157
  # Main function to orchestrate the dashboard
158
  def main():
159
  # Load data from SQLite database
160
- db_file = 'imdb_data.db' # Adjust path as needed
161
  conn = load_data(db_file)
162
 
163
  # Fetch and display summary info
164
  total_movies, total_years, avg_rating = fetch_summary_info(conn)
165
- summary_info = f"Total Movies: {total_movies}\nTotal Years: {total_years}\nAverage Rating: {avg_rating:.2f}"
 
166
  st.write("# IMDb Dashboard")
167
  st.write("## Summary Information")
168
- st.markdown(summary_info)
 
 
 
 
 
 
 
 
 
 
 
169
 
170
  # Display global map of total films per region
171
  df_movie_region = pd.read_csv('movie_region.csv') # Replace with your actual CSV loading
 
129
  plt.imshow(wordcloud, interpolation='bilinear')
130
  plt.axis('off')
131
  plt.title('Top Genres in IMDb Dataset')
132
+ st.pyplot(plt.gcf()) # Pass the current figure explicitly to st.pyplot()
133
 
134
  # Function to find best movie of each genre by numVotes * averageRating
135
  def find_best_movies_by_genre(conn):
 
157
  # Main function to orchestrate the dashboard
158
  def main():
159
  # Load data from SQLite database
160
+ db_file = 'imdb_data/imdb_data.db' # Adjust path as needed
161
  conn = load_data(db_file)
162
 
163
  # Fetch and display summary info
164
  total_movies, total_years, avg_rating = fetch_summary_info(conn)
165
+
166
+ # Display summary information in three columns
167
  st.write("# IMDb Dashboard")
168
  st.write("## Summary Information")
169
+
170
+ # Layout the summary information in three columns with big bold numbers
171
+ col1, col2, col3 = st.columns(3)
172
+ with col1:
173
+ st.subheader("Total Movies")
174
+ st.markdown(f"**{total_movies}**")
175
+ with col2:
176
+ st.subheader("Total Years")
177
+ st.markdown(f"**{total_years}**")
178
+ with col3:
179
+ st.subheader("Average Rating")
180
+ st.markdown(f"**{avg_rating:.2f}**")
181
 
182
  # Display global map of total films per region
183
  df_movie_region = pd.read_csv('movie_region.csv') # Replace with your actual CSV loading