import gradio as gr import websockets import asyncio import json import base64 from PIL import Image import io def process_image_stream(image, question, max_tokens): return "This is a test response" # Create Gradio interface demo = gr.Interface( fn=process_image_stream, inputs=[ gr.Image(type="filepath", label="Upload Image"), gr.Textbox( label="Question", placeholder="Ask a question about the image...", value="Describe this image" ), gr.Slider( minimum=50, maximum=200, value=200, step=1, label="Max Tokens" ) ], outputs=gr.Textbox(label="Response", interactive=False), title="Nexa Omni Vision", description=f""" Model Repo: NexaAIDev/omnivision-968M *Model updated on Nov 21, 2024\n Upload an image and ask questions about it. The model will analyze the image and provide detailed answers to your queries. """, ) if __name__ == "__main__": demo.queue().launch(server_name="0.0.0.0", server_port=7860)