File size: 10,620 Bytes
71afaf8
 
c994801
 
5832682
 
c994801
 
 
 
5832682
 
 
c994801
5832682
c994801
5832682
c994801
5832682
c994801
 
 
 
 
 
 
 
206b146
c994801
 
 
 
f63f16f
c994801
e63421f
c994801
 
 
 
 
 
38a238d
da578ca
c994801
 
 
 
 
 
 
5832682
 
 
 
 
 
c994801
 
 
 
da578ca
c994801
 
 
 
 
 
 
 
5832682
da578ca
e63421f
c994801
 
 
5832682
da578ca
e63421f
c994801
 
 
 
 
da578ca
c994801
 
5832682
c994801
5832682
 
9783073
5832682
 
 
c994801
65b682e
d407658
c994801
5832682
 
 
 
 
 
 
 
 
c994801
 
 
5832682
 
c994801
 
 
5832682
 
ef0f6be
d407658
5832682
 
 
 
 
 
 
 
 
c994801
45693cc
d93e1b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c994801
5832682
c0e798c
 
 
eba1e2c
 
 
c0e798c
 
 
 
eba1e2c
c0e798c
d93e1b9
adcd39d
c0e798c
d93e1b9
c0e798c
 
 
d93e1b9
c0e798c
 
 
 
 
 
 
 
adcd39d
eba1e2c
c0e798c
 
 
 
 
 
 
 
 
eba1e2c
 
 
c0e798c
5832682
 
 
 
c994801
 
 
06efbe9
c994801
 
5832682
 
c0e798c
 
 
5832682
 
 
 
c0e798c
5832682
 
 
 
 
c994801
c0e798c
5832682
 
c994801
 
c0e798c
5832682
 
 
c994801
5832682
 
 
 
 
c994801
 
5832682
 
 
 
 
 
c994801
 
 
 
5832682
c994801
 
 
77c778e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
<!doctype html>
<html lang="en">
<head>
  <meta charset="utf-8" />
  <meta name="viewport" content="width=device-width, initial-scale=1" />
  <title>TokenVisualizer — Minimal</title>
  <link rel="preconnect" href="https://fonts.googleapis.com">
  <link href="https://fonts.googleapis.com/css2?family=Inter:wght@400;600&family=JetBrains+Mono:wght@400;600&display=swap" rel="stylesheet">
  <style>
    :root{
      --bg:#0b0f14; --text:#ffffff; --muted:#9aa4b2; --accent:#38bdf8; --border:#1f2a3a;
      --card1:#0c1624; --card2:#0a1220; --chip:#111827; --chip-border:#263246; --chip-hover:#1a2434;
      --mono:'JetBrains Mono',ui-monospace,Menlo,Consolas,monospace; --sans:Inter,system-ui,-apple-system,"Segoe UI",Roboto,Ubuntu,"Helvetica Neue",Arial;
    }
    *{box-sizing:border-box} body{margin:0;background:radial-gradient(900px 500px at 10% -10%, #07314a, transparent),var(--bg);color:var(--text);font-family:var(--sans)}
    .container{max-width:1100px;margin:0 auto;padding:1.25rem}
    header{padding-top:1.5rem} h1{margin:.2rem 0 .4rem;font-size:1.9rem}
    .sub{color:var(--muted);margin:.25rem 0 1rem}
    .card{background:linear-gradient(180deg,var(--card1),var(--card2));border:1px solid var(--border);border-radius:14px;padding:1rem;box-shadow:0 10px 40px rgba(0,0,0,.35)}
    label span{color:var(--muted);font-size:.9rem}
    select,textarea{width:100%;border-radius:10px;border:1px solid var(--border);background:#0a1220;color:var(--text);padding:.7rem .85rem;outline:none}
    select:focus,textarea:focus{border-color:var(--accent)}
    .controls{display:grid;gap:.8rem;margin-bottom:1rem}
    .row{display:flex;gap:.75rem;align-items:center}
    .status{color:var(--muted)}
    .grid{display:grid;gap:1rem;grid-template-columns:1fr}
    @media (min-width:900px){.grid{grid-template-columns:1fr 1fr}}
    .head{display:block;align-items:center;justify-content:space-between;margin-bottom:0rem}
    .tokens{display:flex;flex-wrap:wrap;gap:.5rem;max-height:360px;overflow:auto;padding:.25rem}
    .chip{border:1px solid var(--chip-border);background:var(--chip);padding:.35rem .5rem;border-radius:10px;font-family:var(--mono);font-size:.9rem;transition:background .12s,border-color .12s}
    .chip:hover{background:var(--chip-hover);border-color:var(--accent)}
    .chip.active{outline:2px solid var(--accent)}
    .chip.special {border-color: #38bdf8;background: #0b2235;}
    pre.ids{font-family:var(--mono);background:#0a1220;border:1px solid var(--border);border-radius:10px;padding:.75rem;max-height:360px;overflow:auto;white-space:pre-wrap}
    .caption{color:var(--muted);font-size:.9rem;margin-top:0rem;margin-bottom:.75rem;}
    footer{color:var(--muted);text-align:center;padding:1.25rem 0 2rem}
    a{color:var(--accent)}
  </style>
</head>
<body>
  <header class="container">
    <h1>Token Visualizer</h1>
    <p class="sub">Enter any text and see how AI turns it into tokens and IDs, the building blocks of its thinking.</p>
  </header>

  <main class="container">
    <section class="card controls">
      <label>
        <span>Model</span>
        <select id="model">
          <!-- Tip: keep this first so the demo works instantly once you upload /assets/gpt2/* -->
          <option value="local:gpt2">GPT-2 (local, fast)</option>
          <option value="Xenova/llama2-tokenizer">Llama-2 (Hub)</option>
          <option value="Xenova/mistral-tokenizer">Mistral (Hub)</option>
          <option value="Xenova/gemma-tokenizer">Gemma (Hub)</option>
          <option value="Xenova/bert-base-uncased">BERT Base Uncased (Hub)</option>
        </select>
      </label>
      <label>
        <span>Text</span>
        <textarea id="input" rows="3">Curiosity propelled the cat to unfathomable heights.</textarea>
      </label>
      <div class="row">
        <span id="status" class="status">Loading tokenizer…</span>
      </div>
    </section>

    <section class="grid">
      <article class="card">
        <div class="head"><h3>Tokens</h3></div>
        <p class="caption">The smallest language units the model works with.</p>
        <div id="tokens" class="tokens"></div>
      </article>

      <article class="card">
        <div class="head"><h3>Token IDs</h3></div>
        <p class="caption">Their numeric form inside the model’s computations.</p>
        <pre id="ids" class="ids"></pre>
      </article>
    </section>
  </main>

  <footer class="container">
    <small>Built by Peter Adams • Powered in your browser by <a href="https://github.com/xenova/transformers.js" target="_blank" rel="noreferrer">Transformers.js</a></small>
  </footer>

  <!-- Minimal, robust script (no copy/export) -->
  <script type="module">
    // Prefer keeping all requests on huggingface.co to avoid CORS/VPN issues.
    // Option 1 (simple): CDN import (works on many networks)
    const tf = await import('https://cdn.jsdelivr.net/npm/@xenova/[email protected]');
    // Option 2 (bulletproof): self-host the file in your Space and use:
    // const tf = await import('./assets/vendor/transformers.min.js');

    tf.env.useBrowserCache = true;
    tf.env.allowLocalModels = true; // <-- REQUIRED for local folder paths
    tf.env.localModelPath = '/';

    const $ = s => document.querySelector(s);
    const modelSel = $('#model');
    const inputEl  = $('#input');
    const statusEl = $('#status');
    const tokensEl = $('#tokens');
    const idsEl    = $('#ids');

    // Single state object; never reassign
    const state = { tokens: [], ids: [] };
    let tokenizer = null;
    let runId = 0;

    const status = (msg) => { statusEl.textContent = msg; };
    const debounce = (fn, ms=200) => { let t; return (...a)=>{ clearTimeout(t); t=setTimeout(()=>fn(...a), ms); }; };

    async function loadTokenizer(modelId){
      status('Loading tokenizer…');
      try {
        if (modelId === 'local:gpt2') {
          // Note: no double slashes, no /resolve/main – just your folder.
          tokenizer = await tf.AutoTokenizer.from_pretrained('assets/gpt2');
        } else {
          tokenizer = await tf.AutoTokenizer.from_pretrained(modelId);
        }
        status('Tokenizer ready.');
      } catch (e) {
        console.error('Tokenizer load failed:', e);
        tokenizer = null;
        status('Failed to load tokenizer (network blocked or slow). Try GPT-2 or a different VPN route.');
      }
    }
    
    async function tokenize(){
      const myRun = ++runId;
    
      if (!tokenizer) {
        await loadTokenizer(modelSel.value);
        if (!tokenizer) { render(); return; }
      }
    
      // Make sure we always pass a string to encode()
      const text = String(inputEl.value ?? '').trim();
      if (!text) {
        state.tokens = [];
        state.ids = [];
        render();
        status('Type to tokenize…');
        return;
      }
    
      status('Tokenizing…');
      try {
        const enc = await tokenizer.encode(text); // include specials (default)
        // Handle both array/object return shapes
        const ids = Array.isArray(enc)
          ? enc
          : (enc && (enc.ids ?? enc.input_ids ?? enc.inputIds)) || [];
      
        // Map special IDs -> special token strings (if available)
        const specialIds = Array.from(tokenizer.all_special_ids || []);
        const specialTokens = Array.from(tokenizer.all_special_tokens || []);
        const idToSpecial = new Map(specialIds.map((id, i) => [id, specialTokens[i]]));
      
        // Build token strings for every ID (specials included)
        let tokens = [];
        if (typeof tokenizer.convert_ids_to_tokens === 'function') {
          tokens = tokenizer.convert_ids_to_tokens(ids);
        } else if (typeof tokenizer.id_to_token === 'function') {
          tokens = ids.map(id => tokenizer.id_to_token(id));
        } else if (!Array.isArray(enc) && Array.isArray(enc.tokens)) {
          tokens = enc.tokens;
        } else {
          // Fallback: decode each ID as a single-piece token
          tokens = ids.map(id =>
            tokenizer.decode([id], {
              // we WANT specials in the stream; decode may return "" for them
              skip_special_tokens: false,
              clean_up_tokenization_spaces: false,
            })
          );
        }
      
        // Ensure specials are visible: if a special token decodes to empty,
        // replace it with its canonical name or a generic tag.
        tokens = tokens.map((tok, i) => {
          const id = ids[i];
          if (tok && tok.length) return tok;
          if (idToSpecial.has(id)) return idToSpecial.get(id); // e.g., <|endoftext|> for GPT-2
          return `<special:${id}>`;
        });
      
        if (myRun !== runId) return;
      
        state.tokens = tokens;
        state.ids = ids; // include specials in the count
        render();
        status(`Done. ${state.tokens.length} tokens.`);
      } catch (e) {
        console.error('Tokenize failed:', e);
        render();
        status('Error tokenizing. See console.');
      }
    }

    function render(){
      const tokens = Array.isArray(state.tokens) ? state.tokens : [];
      const ids    = Array.isArray(state.ids)    ? state.ids    : [];
    
      const specialSet = new Set(tokenizer.all_special_ids || []);
    
      tokensEl.innerHTML = '';
      tokens.forEach((tok, i) => {
        const chip = document.createElement('span');
        chip.className = 'chip';
        if (specialSet.has(ids[i])) chip.classList.add('special'); // <-- highlight specials
        chip.dataset.i = i;
        chip.textContent = tok;
        chip.addEventListener('mouseenter', ()=>highlight(i, true));
        chip.addEventListener('mouseleave', ()=>highlight(i, false));
        tokensEl.appendChild(chip);
      });
    
      idsEl.textContent = ids.join(' ');
      if (tokens.length === 0) status('Type to tokenize…');
    }


    function highlight(i, on){
      const ids = Array.isArray(state.ids) ? state.ids : [];
      if (!ids.length) return;

      const parts = ids.map((id, idx) => (idx === i && on) ? `[${id}]` : String(id));
      idsEl.textContent = parts.join(' ');

      const chip = tokensEl.querySelector(`[data-i="${i}"]`);
      if (chip) chip.classList.toggle('active', on);
    }

    const debounced = debounce(tokenize, 200);
    inputEl.addEventListener('input', debounced);

    modelSel.addEventListener('change', async ()=>{
      tokenizer = null;                 // force reload
      await loadTokenizer(modelSel.value);
      tokenize();
    });

    // Initial load
    await loadTokenizer(modelSel.value);
    tokenize();
  </script>
</body>
</html>