Spaces:
Running
Running
Commit
·
b9b96cc
0
Parent(s):
Initial commit: Token Probability Analyzer web application
Browse files- .gitignore +38 -0
- README.md +35 -0
- app.py +98 -0
- requirements.txt +4 -0
- static/script.js +145 -0
- static/style.css +195 -0
- templates/index.html +60 -0
.gitignore
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
*.so
|
| 6 |
+
.Python
|
| 7 |
+
build/
|
| 8 |
+
develop-eggs/
|
| 9 |
+
dist/
|
| 10 |
+
downloads/
|
| 11 |
+
eggs/
|
| 12 |
+
.eggs/
|
| 13 |
+
lib/
|
| 14 |
+
lib64/
|
| 15 |
+
parts/
|
| 16 |
+
sdist/
|
| 17 |
+
var/
|
| 18 |
+
wheels/
|
| 19 |
+
*.egg-info/
|
| 20 |
+
.installed.cfg
|
| 21 |
+
*.egg
|
| 22 |
+
|
| 23 |
+
# Virtual Environment
|
| 24 |
+
venv/
|
| 25 |
+
env/
|
| 26 |
+
ENV/
|
| 27 |
+
|
| 28 |
+
# IDE
|
| 29 |
+
.idea/
|
| 30 |
+
.vscode/
|
| 31 |
+
*.swp
|
| 32 |
+
*.swo
|
| 33 |
+
|
| 34 |
+
# Misc
|
| 35 |
+
.DS_Store
|
| 36 |
+
.env
|
| 37 |
+
.env.local
|
| 38 |
+
.env.*.local
|
README.md
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Token Probability Analyzer
|
| 2 |
+
|
| 3 |
+
A web application that analyzes token probabilities using various language models. This tool helps visualize and understand how language models predict tokens in a given text sequence.
|
| 4 |
+
|
| 5 |
+
## Features
|
| 6 |
+
|
| 7 |
+
- Support for multiple language models (GPT-2, TinyLlama, etc.)
|
| 8 |
+
- Token-by-token probability analysis
|
| 9 |
+
- Percentile scoring for token probabilities
|
| 10 |
+
- Top-k predictions for each position
|
| 11 |
+
- Joint and average log likelihood calculations
|
| 12 |
+
|
| 13 |
+
## Setup
|
| 14 |
+
|
| 15 |
+
1. Install the required dependencies:
|
| 16 |
+
```bash
|
| 17 |
+
pip install -r requirements.txt
|
| 18 |
+
```
|
| 19 |
+
|
| 20 |
+
2. Run the application:
|
| 21 |
+
```bash
|
| 22 |
+
python app.py
|
| 23 |
+
```
|
| 24 |
+
|
| 25 |
+
3. Open your browser and navigate to `http://localhost:5000`
|
| 26 |
+
|
| 27 |
+
## Usage
|
| 28 |
+
|
| 29 |
+
1. Select a language model from the dropdown menu
|
| 30 |
+
2. Enter your text in the input field
|
| 31 |
+
3. Click "Analyze" to see the token probabilities and predictions
|
| 32 |
+
|
| 33 |
+
## Technical Details
|
| 34 |
+
|
| 35 |
+
The application uses Flask for the backend and provides a simple web interface. It leverages the Hugging Face Transformers library to load and run various language models for token probability analysis.
|
app.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, render_template, request, jsonify
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from scipy.stats import percentileofscore
|
| 6 |
+
|
| 7 |
+
app = Flask(__name__)
|
| 8 |
+
|
| 9 |
+
DEFAULT_MODEL = "gpt2"
|
| 10 |
+
|
| 11 |
+
model_cache = {}
|
| 12 |
+
tokenizer_cache = {}
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def get_model_and_tokenizer(model_name):
|
| 16 |
+
if model_name not in model_cache:
|
| 17 |
+
trust_code = model_name == "microsoft/phi-1_5"
|
| 18 |
+
model_cache[model_name] = AutoModelForCausalLM.from_pretrained(
|
| 19 |
+
model_name, trust_remote_code=trust_code
|
| 20 |
+
)
|
| 21 |
+
tokenizer_cache[model_name] = AutoTokenizer.from_pretrained(
|
| 22 |
+
model_name, trust_remote_code=trust_code
|
| 23 |
+
)
|
| 24 |
+
return model_cache[model_name], tokenizer_cache[model_name]
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
@app.route("/")
|
| 28 |
+
def index():
|
| 29 |
+
return render_template(
|
| 30 |
+
"index.html",
|
| 31 |
+
models=[
|
| 32 |
+
DEFAULT_MODEL,
|
| 33 |
+
# "gpt2-medium",
|
| 34 |
+
# "gpt2-large",
|
| 35 |
+
# "gpt2-xl",
|
| 36 |
+
# "EleutherAI/pythia-1.4b",
|
| 37 |
+
# "facebook/opt-1.3b",
|
| 38 |
+
# "bigscience/bloom-1b7",
|
| 39 |
+
# "microsoft/phi-1_5",
|
| 40 |
+
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
| 41 |
+
],
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
@app.route("/analyze", methods=["POST"])
|
| 46 |
+
def analyze():
|
| 47 |
+
data = request.get_json()
|
| 48 |
+
text = data["text"]
|
| 49 |
+
model_name = data["model"]
|
| 50 |
+
|
| 51 |
+
model, tokenizer = get_model_and_tokenizer(model_name)
|
| 52 |
+
model.eval()
|
| 53 |
+
|
| 54 |
+
with torch.no_grad():
|
| 55 |
+
inputs = tokenizer(text, return_tensors="pt")
|
| 56 |
+
outputs = model(**inputs)
|
| 57 |
+
logits = outputs.logits
|
| 58 |
+
|
| 59 |
+
input_ids = inputs["input_ids"][0]
|
| 60 |
+
tokens = tokenizer.convert_ids_to_tokens(input_ids)
|
| 61 |
+
|
| 62 |
+
log_probs = []
|
| 63 |
+
all_log_probs_list = []
|
| 64 |
+
top_k_predictions = []
|
| 65 |
+
|
| 66 |
+
for i in range(len(input_ids) - 1):
|
| 67 |
+
probs_at_position = F.log_softmax(logits[0, i, :], dim=-1)
|
| 68 |
+
all_log_probs_list.extend(probs_at_position.tolist())
|
| 69 |
+
|
| 70 |
+
top_k_values, top_k_indices = torch.topk(probs_at_position, 5)
|
| 71 |
+
top_k_tokens = tokenizer.convert_ids_to_tokens(top_k_indices)
|
| 72 |
+
top_k_predictions.append(
|
| 73 |
+
[
|
| 74 |
+
{"token": t, "log_prob": v.item()}
|
| 75 |
+
for t, v in zip(top_k_tokens, top_k_values)
|
| 76 |
+
]
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
log_prob = probs_at_position[input_ids[i + 1]].item()
|
| 80 |
+
log_probs.append(log_prob)
|
| 81 |
+
|
| 82 |
+
percentiles = [percentileofscore(all_log_probs_list, lp) for lp in log_probs]
|
| 83 |
+
joint_log_likelihood = sum(log_probs)
|
| 84 |
+
average_log_likelihood = (
|
| 85 |
+
joint_log_likelihood / len(log_probs) if log_probs else 0
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
return jsonify({
|
| 89 |
+
"tokens": tokens,
|
| 90 |
+
"percentiles": percentiles,
|
| 91 |
+
"log_probs": log_probs,
|
| 92 |
+
"top_k_predictions": top_k_predictions,
|
| 93 |
+
"joint_log_likelihood": joint_log_likelihood,
|
| 94 |
+
"average_log_likelihood": average_log_likelihood,
|
| 95 |
+
})
|
| 96 |
+
|
| 97 |
+
if __name__ == "__main__":
|
| 98 |
+
app.run(debug=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
flask
|
| 2 |
+
transformers
|
| 3 |
+
torch
|
| 4 |
+
scipy
|
static/script.js
ADDED
|
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
document.getElementById("analyze-button").addEventListener("click", async () => {
|
| 2 |
+
const text = document.getElementById("input-text").value;
|
| 3 |
+
const model = document.getElementById("model-select").value;
|
| 4 |
+
|
| 5 |
+
const response = await fetch("/analyze", {
|
| 6 |
+
method: "POST",
|
| 7 |
+
headers: {
|
| 8 |
+
"Content-Type": "application/json"
|
| 9 |
+
},
|
| 10 |
+
body: JSON.stringify({ text, model })
|
| 11 |
+
});
|
| 12 |
+
|
| 13 |
+
const data = await response.json();
|
| 14 |
+
|
| 15 |
+
const coloredTextDiv = document.getElementById("colored-text");
|
| 16 |
+
coloredTextDiv.innerHTML = "";
|
| 17 |
+
|
| 18 |
+
// Always add the first token
|
| 19 |
+
const firstToken = data.tokens[0];
|
| 20 |
+
const firstTokenSpan = document.createElement("span");
|
| 21 |
+
firstTokenSpan.classList.add("token");
|
| 22 |
+
|
| 23 |
+
// Handle special tokens and regular tokens differently
|
| 24 |
+
if (firstToken === "<s>" || firstToken === "<|endoftext|>") {
|
| 25 |
+
firstTokenSpan.style.backgroundColor = "#808080"; // Gray for special tokens
|
| 26 |
+
firstTokenSpan.textContent = "■";
|
| 27 |
+
tippy(firstTokenSpan, {
|
| 28 |
+
content: "<div><strong>Beginning of Sequence</strong></div>",
|
| 29 |
+
allowHTML: true,
|
| 30 |
+
theme: 'custom',
|
| 31 |
+
placement: 'top',
|
| 32 |
+
interactive: true
|
| 33 |
+
});
|
| 34 |
+
} else {
|
| 35 |
+
// Handle regular first token
|
| 36 |
+
firstTokenSpan.style.backgroundColor = "#808080"; // or any other color you prefer
|
| 37 |
+
firstTokenSpan.textContent = firstToken;
|
| 38 |
+
tippy(firstTokenSpan, {
|
| 39 |
+
content: `<div><strong>First Token</strong></div>`,
|
| 40 |
+
allowHTML: true,
|
| 41 |
+
theme: 'custom',
|
| 42 |
+
placement: 'top',
|
| 43 |
+
interactive: true
|
| 44 |
+
});
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
coloredTextDiv.appendChild(firstTokenSpan);
|
| 48 |
+
|
| 49 |
+
for (let index = 0; index < data.log_probs.length; index++) {
|
| 50 |
+
const token = data.tokens[index + 1];
|
| 51 |
+
const percentile = data.percentiles[index];
|
| 52 |
+
const logProb = data.log_probs[index];
|
| 53 |
+
const topKPredictions = data.top_k_predictions[index];
|
| 54 |
+
const color = getColor(data.log_probs, logProb);
|
| 55 |
+
|
| 56 |
+
const tokenSpan = document.createElement("span");
|
| 57 |
+
tokenSpan.classList.add("token");
|
| 58 |
+
tokenSpan.style.backgroundColor = color;
|
| 59 |
+
|
| 60 |
+
let displayToken = token;
|
| 61 |
+
let specialTokenDescription = "";
|
| 62 |
+
|
| 63 |
+
// Enhanced special token handling
|
| 64 |
+
if (token === "<s>" || token === "<|endoftext|>") {
|
| 65 |
+
displayToken = "■";
|
| 66 |
+
specialTokenDescription = "Beginning of Sequence";
|
| 67 |
+
} else if (token === "</s>" || token === "<|endoftext|>") {
|
| 68 |
+
displayToken = "■";
|
| 69 |
+
specialTokenDescription = "End of Sequence";
|
| 70 |
+
} else if (token === "<0x0A>") {
|
| 71 |
+
displayToken = "■";
|
| 72 |
+
specialTokenDescription = "Newline";
|
| 73 |
+
} else if (token.startsWith("<") && token.endsWith(">")) {
|
| 74 |
+
displayToken = "■";
|
| 75 |
+
specialTokenDescription = "Special Token: " + token;
|
| 76 |
+
} else {
|
| 77 |
+
// Clean up GPT-2 style tokens (Ġ and Ċ)
|
| 78 |
+
displayToken = displayToken
|
| 79 |
+
.replace(/\u2581/g, " ") // Replace underscore token
|
| 80 |
+
.replace(/Ġ/g, " ") // Replace GPT-2 space token
|
| 81 |
+
.replace(/Ċ/g, "\n"); // Replace GPT-2 newline token
|
| 82 |
+
}
|
| 83 |
+
|
| 84 |
+
tokenSpan.textContent = displayToken;
|
| 85 |
+
|
| 86 |
+
let tooltipContent = "";
|
| 87 |
+
if (specialTokenDescription) {
|
| 88 |
+
tooltipContent += `<div style="font-weight: bold; margin-bottom: 8px;">${specialTokenDescription}</div>`;
|
| 89 |
+
}
|
| 90 |
+
|
| 91 |
+
tooltipContent += `<div style="font-weight: bold; margin-bottom: 4px;">Top 5 Predictions:</div>`;
|
| 92 |
+
topKPredictions.forEach(pred => {
|
| 93 |
+
let predToken = pred.token;
|
| 94 |
+
if (predToken === "<0x0A>") {
|
| 95 |
+
predToken = "\\n";
|
| 96 |
+
} else if (predToken.startsWith("<") && predToken.endsWith(">")) {
|
| 97 |
+
predToken = "[SPECIAL]";
|
| 98 |
+
} else {
|
| 99 |
+
predToken = predToken
|
| 100 |
+
.replace(/\u2581/g, " ")
|
| 101 |
+
.replace(/Ġ/g, " ")
|
| 102 |
+
.replace(/Ċ/g, "\n");
|
| 103 |
+
}
|
| 104 |
+
tooltipContent += `<div style="padding-left: 8px;">${predToken}: ${pred.log_prob.toFixed(4)}</div>`;
|
| 105 |
+
});
|
| 106 |
+
|
| 107 |
+
tooltipContent += `<div style="margin-top: 8px; border-top: 1px solid #555; padding-top: 8px;">
|
| 108 |
+
<div><strong>Stats:</strong></div>
|
| 109 |
+
<div style="padding-left: 8px;">Percentile: ${percentile.toFixed(2)}</div>
|
| 110 |
+
<div style="padding-left: 8px;">Log-Likelihood: ${logProb.toFixed(4)}</div>
|
| 111 |
+
</div>`;
|
| 112 |
+
|
| 113 |
+
tippy(tokenSpan, {
|
| 114 |
+
content: tooltipContent,
|
| 115 |
+
allowHTML: true,
|
| 116 |
+
theme: 'custom',
|
| 117 |
+
placement: 'top',
|
| 118 |
+
interactive: true
|
| 119 |
+
});
|
| 120 |
+
|
| 121 |
+
coloredTextDiv.appendChild(tokenSpan);
|
| 122 |
+
if (token === "<0x0A>") {
|
| 123 |
+
coloredTextDiv.appendChild(document.createElement("br"));
|
| 124 |
+
}
|
| 125 |
+
}
|
| 126 |
+
|
| 127 |
+
document.getElementById("joint-log-likelihood").textContent = data.joint_log_likelihood.toFixed(4);
|
| 128 |
+
document.getElementById("average-log-likelihood").textContent = data.average_log_likelihood.toFixed(4);
|
| 129 |
+
});
|
| 130 |
+
|
| 131 |
+
function getColor(allLogProbs, currentLogProb) {
|
| 132 |
+
const minLogProb = Math.min(...allLogProbs);
|
| 133 |
+
const maxLogProb = Math.max(...allLogProbs);
|
| 134 |
+
|
| 135 |
+
// Normalize to 0-1 range
|
| 136 |
+
let normalizedLogProb = (currentLogProb - minLogProb) / (maxLogProb - minLogProb);
|
| 137 |
+
normalizedLogProb = Math.max(0, Math.min(1, normalizedLogProb)); // Clamp
|
| 138 |
+
|
| 139 |
+
// Optional: Apply a power transformation (adjust the exponent as needed)
|
| 140 |
+
const power = 0.7; // Example: Less than 1 emphasizes differences at lower end
|
| 141 |
+
normalizedLogProb = Math.pow(normalizedLogProb, power);
|
| 142 |
+
|
| 143 |
+
const hue = normalizedLogProb * 120; // 0 (red) to 120 (green)
|
| 144 |
+
return `hsl(${hue}, 100%, 50%)`;
|
| 145 |
+
}
|
static/style.css
ADDED
|
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
:root {
|
| 2 |
+
--primary-color: #2563eb;
|
| 3 |
+
--primary-hover: #1d4ed8;
|
| 4 |
+
--background-color: #f8fafc;
|
| 5 |
+
--card-background: #ffffff;
|
| 6 |
+
--text-primary: #1e293b;
|
| 7 |
+
--text-secondary: #64748b;
|
| 8 |
+
--border-color: #e2e8f0;
|
| 9 |
+
--token-hover: #f1f5f9;
|
| 10 |
+
}
|
| 11 |
+
|
| 12 |
+
* {
|
| 13 |
+
margin: 0;
|
| 14 |
+
padding: 0;
|
| 15 |
+
box-sizing: border-box;
|
| 16 |
+
}
|
| 17 |
+
|
| 18 |
+
body {
|
| 19 |
+
font-family: 'Inter', sans-serif;
|
| 20 |
+
background-color: var(--background-color);
|
| 21 |
+
color: var(--text-primary);
|
| 22 |
+
line-height: 1.5;
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
.container {
|
| 26 |
+
max-width: 1200px;
|
| 27 |
+
margin: 0 auto;
|
| 28 |
+
padding: 2rem;
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
+
header {
|
| 32 |
+
text-align: center;
|
| 33 |
+
margin-bottom: 2rem;
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
h1 {
|
| 37 |
+
font-size: 2.5rem;
|
| 38 |
+
font-weight: 600;
|
| 39 |
+
color: var(--text-primary);
|
| 40 |
+
margin-bottom: 0.5rem;
|
| 41 |
+
}
|
| 42 |
+
|
| 43 |
+
.subtitle {
|
| 44 |
+
color: var(--text-secondary);
|
| 45 |
+
font-size: 1.1rem;
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
.control-panel {
|
| 49 |
+
background-color: var(--card-background);
|
| 50 |
+
border-radius: 12px;
|
| 51 |
+
padding: 1.5rem;
|
| 52 |
+
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
|
| 53 |
+
margin-bottom: 2rem;
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
.input-group {
|
| 57 |
+
margin-bottom: 1.5rem;
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
label {
|
| 61 |
+
display: block;
|
| 62 |
+
margin-bottom: 0.5rem;
|
| 63 |
+
font-weight: 500;
|
| 64 |
+
color: var(--text-primary);
|
| 65 |
+
}
|
| 66 |
+
|
| 67 |
+
.styled-select {
|
| 68 |
+
width: 100%;
|
| 69 |
+
padding: 0.75rem;
|
| 70 |
+
border: 1px solid var(--border-color);
|
| 71 |
+
border-radius: 6px;
|
| 72 |
+
font-size: 1rem;
|
| 73 |
+
background-color: white;
|
| 74 |
+
cursor: pointer;
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
textarea {
|
| 78 |
+
width: 100%;
|
| 79 |
+
min-height: 120px;
|
| 80 |
+
padding: 0.75rem;
|
| 81 |
+
border: 1px solid var(--border-color);
|
| 82 |
+
border-radius: 6px;
|
| 83 |
+
font-size: 1rem;
|
| 84 |
+
font-family: inherit;
|
| 85 |
+
resize: vertical;
|
| 86 |
+
}
|
| 87 |
+
|
| 88 |
+
.primary-button {
|
| 89 |
+
background-color: var(--primary-color);
|
| 90 |
+
color: white;
|
| 91 |
+
border: none;
|
| 92 |
+
padding: 0.75rem 1.5rem;
|
| 93 |
+
border-radius: 6px;
|
| 94 |
+
font-size: 1rem;
|
| 95 |
+
font-weight: 500;
|
| 96 |
+
cursor: pointer;
|
| 97 |
+
transition: background-color 0.2s;
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
.primary-button:hover {
|
| 101 |
+
background-color: var(--primary-hover);
|
| 102 |
+
}
|
| 103 |
+
|
| 104 |
+
.output-panel {
|
| 105 |
+
background-color: var(--card-background);
|
| 106 |
+
border-radius: 12px;
|
| 107 |
+
padding: 1.5rem;
|
| 108 |
+
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
|
| 109 |
+
}
|
| 110 |
+
|
| 111 |
+
.output-section {
|
| 112 |
+
margin-bottom: 2rem;
|
| 113 |
+
}
|
| 114 |
+
|
| 115 |
+
h2 {
|
| 116 |
+
font-size: 1.5rem;
|
| 117 |
+
margin-bottom: 1rem;
|
| 118 |
+
color: var(--text-primary);
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
.token-display {
|
| 122 |
+
background-color: white;
|
| 123 |
+
border-radius: 8px;
|
| 124 |
+
padding: 1rem;
|
| 125 |
+
line-height: 1.3;
|
| 126 |
+
min-height: 100px;
|
| 127 |
+
font-size: 1rem;
|
| 128 |
+
white-space: pre-wrap;
|
| 129 |
+
}
|
| 130 |
+
|
| 131 |
+
.token {
|
| 132 |
+
padding: 0;
|
| 133 |
+
border-radius: 0;
|
| 134 |
+
margin: 0;
|
| 135 |
+
cursor: pointer;
|
| 136 |
+
transition: background-color 0.15s;
|
| 137 |
+
display: inline;
|
| 138 |
+
}
|
| 139 |
+
|
| 140 |
+
.token:hover {
|
| 141 |
+
background-color: rgba(0, 0, 0, 0.05) !important;
|
| 142 |
+
}
|
| 143 |
+
|
| 144 |
+
.stats-grid {
|
| 145 |
+
display: grid;
|
| 146 |
+
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
|
| 147 |
+
gap: 1rem;
|
| 148 |
+
}
|
| 149 |
+
|
| 150 |
+
.stat-card {
|
| 151 |
+
background-color: white;
|
| 152 |
+
padding: 1rem;
|
| 153 |
+
border-radius: 8px;
|
| 154 |
+
border: 1px solid var(--border-color);
|
| 155 |
+
}
|
| 156 |
+
|
| 157 |
+
.stat-label {
|
| 158 |
+
font-size: 0.875rem;
|
| 159 |
+
color: var(--text-secondary);
|
| 160 |
+
margin-bottom: 0.5rem;
|
| 161 |
+
}
|
| 162 |
+
|
| 163 |
+
.stat-value {
|
| 164 |
+
font-size: 1.25rem;
|
| 165 |
+
font-weight: 600;
|
| 166 |
+
color: var(--text-primary);
|
| 167 |
+
}
|
| 168 |
+
|
| 169 |
+
/* Tippy custom theme */
|
| 170 |
+
.tippy-box[data-theme~='custom'] {
|
| 171 |
+
background-color: white;
|
| 172 |
+
color: var(--text-primary);
|
| 173 |
+
border: 1px solid var(--border-color);
|
| 174 |
+
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
|
| 175 |
+
border-radius: 8px;
|
| 176 |
+
font-size: 0.875rem;
|
| 177 |
+
}
|
| 178 |
+
|
| 179 |
+
.tippy-box[data-theme~='custom'] .tippy-content {
|
| 180 |
+
padding: 1rem;
|
| 181 |
+
}
|
| 182 |
+
|
| 183 |
+
@media (max-width: 768px) {
|
| 184 |
+
.container {
|
| 185 |
+
padding: 1rem;
|
| 186 |
+
}
|
| 187 |
+
|
| 188 |
+
h1 {
|
| 189 |
+
font-size: 2rem;
|
| 190 |
+
}
|
| 191 |
+
|
| 192 |
+
.stats-grid {
|
| 193 |
+
grid-template-columns: 1fr;
|
| 194 |
+
}
|
| 195 |
+
}
|
templates/index.html
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html>
|
| 3 |
+
<head>
|
| 4 |
+
<title>LLM Token Visualization</title>
|
| 5 |
+
<link rel="stylesheet" href="{{ url_for('static', filename='style.css') }}">
|
| 6 |
+
<script src="https://unpkg.com/@popperjs/core@2"></script>
|
| 7 |
+
<script src="https://unpkg.com/tippy.js@6"></script>
|
| 8 |
+
<link rel="stylesheet" href="https://unpkg.com/tippy.js@6/themes/light.css">
|
| 9 |
+
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600&display=swap" rel="stylesheet">
|
| 10 |
+
</head>
|
| 11 |
+
<body>
|
| 12 |
+
<div class="container">
|
| 13 |
+
<header>
|
| 14 |
+
<h1>LLM Token Visualization</h1>
|
| 15 |
+
<p class="subtitle">Analyze how language models process and predict text</p>
|
| 16 |
+
</header>
|
| 17 |
+
|
| 18 |
+
<div class="control-panel">
|
| 19 |
+
<div class="input-group">
|
| 20 |
+
<label for="model-select">Model:</label>
|
| 21 |
+
<select id="model-select" class="styled-select">
|
| 22 |
+
{% for model in models %}
|
| 23 |
+
<option value="{{ model }}">{{ model }}</option>
|
| 24 |
+
{% endfor %}
|
| 25 |
+
</select>
|
| 26 |
+
</div>
|
| 27 |
+
|
| 28 |
+
<div class="input-group">
|
| 29 |
+
<label for="input-text">Text to Analyze:</label>
|
| 30 |
+
<textarea id="input-text" placeholder="Enter your text here..."></textarea>
|
| 31 |
+
</div>
|
| 32 |
+
|
| 33 |
+
<button id="analyze-button" class="primary-button">Analyze</button>
|
| 34 |
+
</div>
|
| 35 |
+
|
| 36 |
+
<div id="output" class="output-panel">
|
| 37 |
+
<div class="output-section">
|
| 38 |
+
<h2>Token Analysis</h2>
|
| 39 |
+
<div id="colored-text" class="token-display"></div>
|
| 40 |
+
</div>
|
| 41 |
+
|
| 42 |
+
<div class="stats-section">
|
| 43 |
+
<h2>Statistics</h2>
|
| 44 |
+
<div class="stats-grid">
|
| 45 |
+
<div class="stat-card">
|
| 46 |
+
<div class="stat-label">Joint Log-Likelihood</div>
|
| 47 |
+
<div class="stat-value" id="joint-log-likelihood">-</div>
|
| 48 |
+
</div>
|
| 49 |
+
<div class="stat-card">
|
| 50 |
+
<div class="stat-label">Average Log-Likelihood</div>
|
| 51 |
+
<div class="stat-value" id="average-log-likelihood">-</div>
|
| 52 |
+
</div>
|
| 53 |
+
</div>
|
| 54 |
+
</div>
|
| 55 |
+
</div>
|
| 56 |
+
</div>
|
| 57 |
+
|
| 58 |
+
<script src="{{ url_for('static', filename='script.js') }}"></script>
|
| 59 |
+
</body>
|
| 60 |
+
</html>
|