Spaces:
Sleeping
Sleeping
# chain_problems.py | |
import json | |
import logging | |
from typing import Dict | |
from langchain import PromptTemplate, LLMChain | |
from models import chat_model | |
logger = logging.getLogger(__name__) | |
problem_prompt_template = PromptTemplate( | |
input_variables=["responses", "internal_report"], | |
template=( | |
"You are a wellness analyst. You have the following user responses to health-related questions:\n" | |
"{responses}\n\n" | |
"You also have an internal analysis report:\n" | |
"{internal_report}\n\n" | |
"From these inputs, determine a 'problem severity percentage' for the user in the following areas: " | |
"sleep, exercise, stress, and diet. " | |
"Return your answer in JSON format with keys: sleep_problem, exercise_problem, stress_problem, diet_problem.\n" | |
"Ensure severity percentages are numbers from 0 to 100.\n\n" | |
"JSON Output:" | |
) | |
) | |
problem_chain = LLMChain(llm=chat_model, prompt=problem_prompt_template) | |
def analyze_problems_with_chain(responses: Dict[str, str], internal_report: str) -> Dict[str, float]: | |
responses_str = "\n".join(f"{q}: {a}" for q, a in responses.items()) | |
raw_text = problem_chain.run(responses=responses_str, internal_report=internal_report) | |
try: | |
start_idx = raw_text.find('{') | |
end_idx = raw_text.rfind('}') + 1 | |
json_str = raw_text[start_idx:end_idx] | |
problems = json.loads(json_str) | |
for key in ["sleep_problem", "exercise_problem", "stress_problem", "diet_problem"]: | |
problems.setdefault(key, 0.0) | |
return {k: float(v) for k, v in problems.items()} | |
except Exception as e: | |
logger.error(f"Error parsing problem percentages from LLM: {e}") | |
return { | |
"sleep_problem": 0.0, | |
"exercise_problem": 0.0, | |
"stress_problem": 0.0, | |
"diet_problem": 0.0 | |
} | |