Phoenix21 commited on
Commit
0dbe352
·
verified ·
1 Parent(s): 936bed3

to correct Web search failed: ManagedAgent.__init__() got an unexpected keyword argument 'llm'

Browse files
Files changed (1) hide show
  1. pipeline.py +4 -2
pipeline.py CHANGED
@@ -39,6 +39,8 @@ gemini_llm = ChatGoogleGenerativeAI(
39
  # Additional parameters or safety_settings can be added here if needed
40
  )
41
 
 
 
42
  ################################################################################
43
  # Pydantic Models
44
  ################################################################################
@@ -314,7 +316,7 @@ def do_cached_web_search(query: str) -> str:
314
  try:
315
  print("DEBUG: Performing a new web search...")
316
  search_tool = DuckDuckGoSearchTool()
317
- search_agent = ManagedAgent(llm=gemini_llm, tools=[search_tool])
318
  new_search_result = search_agent.run(f"Search for information about: {query}")
319
 
320
  # 3) Store in cache for future reuse
@@ -443,4 +445,4 @@ brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir)
443
  wellness_rag_chain = build_rag_chain(wellness_vectorstore)
444
  brand_rag_chain = build_rag_chain(brand_vectorstore)
445
 
446
- print("Pipeline initialized successfully! Ready to handle queries with caching.")
 
39
  # Additional parameters or safety_settings can be added here if needed
40
  )
41
 
42
+ web_gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY"))
43
+
44
  ################################################################################
45
  # Pydantic Models
46
  ################################################################################
 
316
  try:
317
  print("DEBUG: Performing a new web search...")
318
  search_tool = DuckDuckGoSearchTool()
319
+ search_agent = ManagedAgent(llm=web_gemini_llm, tools=[search_tool])
320
  new_search_result = search_agent.run(f"Search for information about: {query}")
321
 
322
  # 3) Store in cache for future reuse
 
445
  wellness_rag_chain = build_rag_chain(wellness_vectorstore)
446
  brand_rag_chain = build_rag_chain(brand_vectorstore)
447
 
448
+ print("Pipeline initialized successfully! Ready to handle querie with caching.")