Spaces:
Sleeping
Sleeping
File size: 9,546 Bytes
9dc639f 74221f2 9dc639f 293661c 53b33ac 293661c 9dc639f 54fafa1 293661c 53b33ac fc48f50 db87ae8 293661c db87ae8 78bd826 54fafa1 74221f2 726773c e8182c5 864c041 74221f2 293661c 74221f2 293661c 74221f2 293661c 53b33ac 293661c 0aef3aa a5cb58f 54fafa1 0aef3aa a5cb58f 54fafa1 74221f2 54fafa1 0aef3aa a5cb58f 21ce388 74221f2 21ce388 53b33ac 0aef3aa db87ae8 e27c8c7 db87ae8 0aef3aa 53b33ac 293661c e27c8c7 293661c 5969369 9dc639f 74221f2 9dc639f e27c8c7 9dc639f 293661c 9dc639f 293661c 53b33ac 9dc639f e27c8c7 9dc639f 53b33ac 9dc639f 864c041 9dc639f 5969369 293661c 293bf44 293661c 293bf44 53b33ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import os
import getpass
import spacy
import pandas as pd
from typing import Optional
import subprocess
import asyncio # Needed for managing async tasks
from langchain.llms.base import LLM
from langchain.docstore.document import Document
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from smolagents import CodeAgent, DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel
from pydantic_ai import Agent # Import Pydantic AI's Agent
from mistralai import Mistral
from langchain.prompts import PromptTemplate
# Import chains and tools
from classification_chain import get_classification_chain
from cleaner_chain import get_cleaner_chain
from refusal_chain import get_refusal_chain
from tailor_chain import get_tailor_chain
from prompts import classification_prompt, refusal_prompt, tailor_prompt
# Initialize Mistral API client
mistral_api_key = os.environ.get("MISTRAL_API_KEY")
client = Mistral(api_key=mistral_api_key)
# Initialize Pydantic AI Agent (for text validation)
pydantic_agent = Agent('mistral:mistral-large-latest', result_type=str)
# Load spaCy model for NER and download it if not already installed
def install_spacy_model():
try:
spacy.load("en_core_web_sm")
print("spaCy model 'en_core_web_sm' is already installed.")
except OSError:
print("Downloading spaCy model 'en_core_web_sm'...")
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True)
print("spaCy model 'en_core_web_sm' downloaded successfully.")
install_spacy_model()
nlp = spacy.load("en_core_web_sm")
# Function to extract the main topic from the query using spaCy NER
def extract_main_topic(query: str) -> str:
doc = nlp(query)
main_topic = None
for ent in doc.ents:
if ent.label_ in ["ORG", "PRODUCT", "PERSON", "GPE", "TIME"]:
main_topic = ent.text
break
if not main_topic:
for token in doc:
if token.pos_ in ["NOUN", "PROPN"]:
main_topic = token.text
break
return main_topic if main_topic else "this topic"
# Function to classify query based on wellness topics
def classify_query(query: str) -> str:
wellness_keywords = ["box breathing", "meditation", "yoga", "mindfulness", "breathing exercises"]
if any(keyword in query.lower() for keyword in wellness_keywords):
return "Wellness"
# Fallback to classification chain if not directly recognized
class_result = classification_chain.invoke({"query": query})
classification = class_result.get("text", "").strip()
return classification if classification != "OutOfScope" else "OutOfScope"
# Function to moderate text using Mistral moderation API (async version)
def moderate_text(query: str) -> str:
try:
# Use Pydantic AI to validate the text
pydantic_agent.run_sync(query) # Use sync run for Pydantic validation
except Exception as e:
print(f"Error validating text: {e}")
return "Invalid text format."
# Call the Mistral moderation API
response = client.classifiers.moderate_chat(
model="mistral-moderation-latest",
inputs=[{"role": "user", "content": query}]
)
# Assuming the response is an object of type 'ClassificationResponse',
# check if it has a 'results' attribute, and then access its categories
if hasattr(response, 'results') and response.results:
categories = response.results[0].categories
# Check if harmful categories are present
if categories.get("violence_and_threats", False) or \
categories.get("hate_and_discrimination", False) or \
categories.get("dangerous_and_criminal_content", False) or \
categories.get("selfharm", False):
return "OutOfScope"
return query
# Function to build or load the vector store from CSV data
def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS:
if os.path.exists(store_dir):
print(f"DEBUG: Found existing FAISS store at '{store_dir}'. Loading...")
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
vectorstore = FAISS.load_local(store_dir, embeddings)
return vectorstore
else:
print(f"DEBUG: Building new store from CSV: {csv_path}")
df = pd.read_csv(csv_path)
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
df.columns = df.columns.str.strip()
if "Answer" in df.columns:
df.rename(columns={"Answer": "Answers"}, inplace=True)
if "Question" not in df.columns and "Question " in df.columns:
df.rename(columns={"Question ": "Question"}, inplace=True)
if "Question" not in df.columns or "Answers" not in df.columns:
raise ValueError("CSV must have 'Question' and 'Answers' columns.")
docs = []
for _, row in df.iterrows():
q = str(row["Question"])
ans = str(row["Answers"])
doc = Document(page_content=ans, metadata={"question": q})
docs.append(doc)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
vectorstore = FAISS.from_documents(docs, embedding=embeddings)
vectorstore.save_local(store_dir)
return vectorstore
# Function to build RAG chain
def build_rag_chain(llm_model: LiteLLMModel, vectorstore: FAISS) -> RetrievalQA:
class GeminiLangChainLLM(LLM):
def _call(self, prompt: str, stop: Optional[list] = None, **kwargs) -> str:
messages = [{"role": "user", "content": prompt}]
return llm_model(messages, stop_sequences=stop)
@property
def _llm_type(self) -> str:
return "custom_gemini"
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
gemini_as_llm = GeminiLangChainLLM()
rag_chain = RetrievalQA.from_chain_type(
llm=gemini_as_llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True
)
return rag_chain
# Function to perform web search using DuckDuckGo
async def do_web_search(query: str) -> str:
search_tool = DuckDuckGoSearchTool()
web_agent = CodeAgent(tools=[search_tool], model=pydantic_agent)
managed_web_agent = ManagedAgent(agent=web_agent, name="web_search", description="Runs web search for you.")
manager_agent = CodeAgent(tools=[], model=pydantic_agent, managed_agents=[managed_web_agent])
search_query = f"Give me relevant info: {query}"
response = manager_agent.run(search_query)
return response
# Function to combine web and knowledge base responses
async def merge_responses(kb_answer: str, web_answer: str) -> str:
# Merge both answers with a cohesive response
final_answer = f"Knowledge Base Answer: {kb_answer}\n\nWeb Search Result: {web_answer}"
return final_answer.strip()
# Orchestrate the entire workflow
async def run_async_pipeline(query: str) -> str:
# Moderate the query for harmful content (async)
moderated_query = await moderate_text(query)
if moderated_query == "OutOfScope":
return "Sorry, this query contains harmful or inappropriate content."
# Classify the query manually
classification = classify_query(moderated_query)
if classification == "OutOfScope":
refusal_text = refusal_chain.run({"topic": "this topic"})
final_refusal = tailor_chain.run({"response": refusal_text})
return final_refusal.strip()
if classification == "Wellness":
rag_result = wellness_rag_chain({"query": moderated_query})
csv_answer = rag_result["result"].strip()
web_answer = "" # Empty if we found an answer from the knowledge base
if not csv_answer:
web_answer = await do_web_search(moderated_query)
final_merged = await merge_responses(csv_answer, web_answer)
final_answer = tailor_chain.run({"response": final_merged})
return final_answer.strip()
if classification == "Brand":
rag_result = brand_rag_chain({"query": moderated_query})
csv_answer = rag_result["result"].strip()
final_merged = await merge_responses(csv_answer, "")
final_answer = tailor_chain.run({"response": final_merged})
return final_answer.strip()
refusal_text = refusal_chain.run({"topic": "this topic"})
final_refusal = tailor_chain.run({"response": refusal_text})
return final_refusal.strip()
# Run the pipeline with the event loop
import asyncio
def run_with_chain(query: str) -> str:
# Use asyncio.run to run the async pipeline, which ensures a fresh event loop
return asyncio.run(run_async_pipeline(query))
# Initialize chains here
classification_chain = get_classification_chain()
refusal_chain = get_refusal_chain()
tailor_chain = get_tailor_chain()
cleaner_chain = get_cleaner_chain()
wellness_csv = "AIChatbot.csv"
brand_csv = "BrandAI.csv"
wellness_store_dir = "faiss_wellness_store"
brand_store_dir = "faiss_brand_store"
wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir)
brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir)
gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY"))
wellness_rag_chain = build_rag_chain(gemini_llm, wellness_vectorstore)
brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore)
|