File size: 9,474 Bytes
9dc639f
 
74221f2
9dc639f
 
293661c
 
9dc639f
 
 
 
 
b0739e4
293661c
53b33ac
 
 
 
 
 
 
 
fc48f50
db87ae8
293661c
db87ae8
78bd826
74221f2
726773c
 
 
 
 
 
 
 
 
 
e8182c5
864c041
74221f2
 
 
 
 
293661c
74221f2
 
 
 
293661c
74221f2
 
 
 
293661c
 
 
 
 
53b33ac
293661c
 
 
 
b0739e4
 
 
 
 
 
54fafa1
b0739e4
 
 
 
74221f2
54fafa1
b0739e4
 
 
 
 
 
 
54fafa1
0aef3aa
a5cb58f
21ce388
b0739e4
21ce388
53b33ac
0aef3aa
 
 
 
 
 
 
 
 
 
db87ae8
b0739e4
db87ae8
0aef3aa
53b33ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0739e4
53b33ac
 
 
 
 
 
 
 
 
 
b0739e4
53b33ac
 
 
 
 
b0739e4
c09fe62
 
e27c8c7
 
 
293661c
5969369
9dc639f
 
74221f2
9dc639f
 
 
 
e27c8c7
9dc639f
293661c
9dc639f
b0739e4
 
9dc639f
 
 
 
e27c8c7
9dc639f
b0739e4
9dc639f
 
 
864c041
9dc639f
 
5969369
53b33ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import os
import getpass
import spacy
import pandas as pd
from typing import Optional
import subprocess
from langchain.llms.base import LLM
from langchain.docstore.document import Document
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from smolagents import CodeAgent, DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel
from pydantic import BaseModel, ValidationError  # Import Pydantic for text validation
from mistralai import Mistral
from langchain.prompts import PromptTemplate

# Import chains and tools
from classification_chain import get_classification_chain
from cleaner_chain import get_cleaner_chain
from refusal_chain import get_refusal_chain
from tailor_chain import get_tailor_chain
from prompts import classification_prompt, refusal_prompt, tailor_prompt

# Initialize Mistral API client
mistral_api_key = os.environ.get("MISTRAL_API_KEY")
client = Mistral(api_key=mistral_api_key)

# Load spaCy model for NER and download it if not already installed
def install_spacy_model():
    try:
        spacy.load("en_core_web_sm")
        print("spaCy model 'en_core_web_sm' is already installed.")
    except OSError:
        print("Downloading spaCy model 'en_core_web_sm'...")
        subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True)
        print("spaCy model 'en_core_web_sm' downloaded successfully.")

install_spacy_model()
nlp = spacy.load("en_core_web_sm")

# Function to extract the main topic from the query using spaCy NER
def extract_main_topic(query: str) -> str:
    doc = nlp(query)
    main_topic = None
    for ent in doc.ents:
        if ent.label_ in ["ORG", "PRODUCT", "PERSON", "GPE", "TIME"]:
            main_topic = ent.text
            break
    if not main_topic:
        for token in doc:
            if token.pos_ in ["NOUN", "PROPN"]:
                main_topic = token.text
                break
    return main_topic if main_topic else "this topic"

# Function to classify query based on wellness topics
def classify_query(query: str) -> str:
    wellness_keywords = ["box breathing", "meditation", "yoga", "mindfulness", "breathing exercises"]
    if any(keyword in query.lower() for keyword in wellness_keywords):
        return "Wellness"
    # Fallback to classification chain if not directly recognized
    class_result = classification_chain.invoke({"query": query})
    classification = class_result.get("text", "").strip()
    return classification if classification != "OutOfScope" else "OutOfScope"

# Pydantic model for text validation
class TextInputModel(BaseModel):
    text: str

# Function to validate the text input using Pydantic
def validate_text(query: str) -> str:
    try:
        # Attempt to validate the query as a text input
        TextInputModel(text=query)
        return query
    except ValidationError as e:
        print(f"Error validating text: {e}")
        return "Invalid text format."

# Function to moderate text using Mistral moderation API (synchronous version)
def moderate_text(query: str) -> str:
    # Validate the text using Pydantic
    validated_text = validate_text(query)
    if validated_text == "Invalid text format.":
        return validated_text
    
    # Call the Mistral moderation API
    response = client.classifiers.moderate_chat(
        model="mistral-moderation-latest",
        inputs=[{"role": "user", "content": validated_text}]
    )
    
    # Assuming the response is an object of type 'ClassificationResponse', 
    # check if it has a 'results' attribute, and then access its categories
    if hasattr(response, 'results') and response.results:
        categories = response.results[0].categories
        # Check if harmful categories are present
        if categories.get("violence_and_threats", False) or \
           categories.get("hate_and_discrimination", False) or \
           categories.get("dangerous_and_criminal_content", False) or \
           categories.get("selfharm", False):
            return "OutOfScope"
    
    return validated_text


# Function to build or load the vector store from CSV data
def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS:
    if os.path.exists(store_dir):
        print(f"DEBUG: Found existing FAISS store at '{store_dir}'. Loading...")
        embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
        vectorstore = FAISS.load_local(store_dir, embeddings)
        return vectorstore
    else:
        print(f"DEBUG: Building new store from CSV: {csv_path}")
        df = pd.read_csv(csv_path)
        df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
        df.columns = df.columns.str.strip()
        if "Answer" in df.columns:
            df.rename(columns={"Answer": "Answers"}, inplace=True)
        if "Question" not in df.columns and "Question " in df.columns:
            df.rename(columns={"Question ": "Question"}, inplace=True)
        if "Question" not in df.columns or "Answers" not in df.columns:
            raise ValueError("CSV must have 'Question' and 'Answers' columns.")
        docs = []
        for _, row in df.iterrows():
            q = str(row["Question"])
            ans = str(row["Answers"])
            doc = Document(page_content=ans, metadata={"question": q})
            docs.append(doc)
        embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
        vectorstore = FAISS.from_documents(docs, embedding=embeddings)
        vectorstore.save_local(store_dir)
        return vectorstore

# Function to build RAG chain
def build_rag_chain(llm_model: LiteLLMModel, vectorstore: FAISS) -> RetrievalQA:
    class GeminiLangChainLLM(LLM):
        def _call(self, prompt: str, stop: Optional[list] = None, **kwargs) -> str:
            messages = [{"role": "user", "content": prompt}]
            return llm_model(messages, stop_sequences=stop)

        @property
        def _llm_type(self) -> str:
            return "custom_gemini"
    
    retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
    gemini_as_llm = GeminiLangChainLLM()
    rag_chain = RetrievalQA.from_chain_type(
        llm=gemini_as_llm,
        chain_type="stuff",
        retriever=retriever,
        return_source_documents=True
    )
    return rag_chain

# Function to perform web search using DuckDuckGo
def do_web_search(query: str) -> str:
    search_tool = DuckDuckGoSearchTool()
    web_agent = CodeAgent(tools=[search_tool], model=pydantic_agent)
    managed_web_agent = ManagedAgent(agent=web_agent, name="web_search", description="Runs web search for you.")
    manager_agent = CodeAgent(tools=[], model=pydantic_agent, managed_agents=[managed_web_agent])
    
    search_query = f"Give me relevant info: {query}"
    response = manager_agent.run(search_query)
    return response

# Function to combine web and knowledge base responses
def merge_responses(kb_answer: str, web_answer: str) -> str:
    # Merge both answers with a cohesive response
    final_answer = f"Knowledge Base Answer: {kb_answer}\n\nWeb Search Result: {web_answer}"
    return final_answer.strip()

# Orchestrate the entire workflow
def run_pipeline(query: str) -> str:
    # Moderate the query for harmful content (sync)
    moderated_query = moderate_text(query)
    if moderated_query == "OutOfScope":
        return "Sorry, this query contains harmful or inappropriate content."

    # Classify the query manually
    classification = classify_query(moderated_query)

    if classification == "OutOfScope":
        refusal_text = refusal_chain.run({"topic": "this topic"})
        final_refusal = tailor_chain.run({"response": refusal_text})
        return final_refusal.strip()

    if classification == "Wellness":
        rag_result = wellness_rag_chain({"query": moderated_query})
        csv_answer = rag_result["result"].strip()
        web_answer = ""  # Empty if we found an answer from the knowledge base
        if not csv_answer:
            web_answer = do_web_search(moderated_query)
        final_merged = merge_responses(csv_answer, web_answer)
        final_answer = tailor_chain.run({"response": final_merged})
        return final_answer.strip()

    if classification == "Brand":
        rag_result = brand_rag_chain({"query": moderated_query})
        csv_answer = rag_result["result"].strip()
        final_merged = merge_responses(csv_answer, "")
        final_answer = tailor_chain.run({"response": final_merged})
        return final_answer.strip()

    refusal_text = refusal_chain.run({"topic": "this topic"})
    final_refusal = tailor_chain.run({"response": refusal_text})
    return final_refusal.strip()

# Initialize chains here
classification_chain = get_classification_chain()
refusal_chain = get_refusal_chain()
tailor_chain = get_tailor_chain()
cleaner_chain = get_cleaner_chain()

wellness_csv = "AIChatbot.csv"
brand_csv = "BrandAI.csv"
wellness_store_dir = "faiss_wellness_store"
brand_store_dir = "faiss_brand_store"

wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir)
brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir)

gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY"))
wellness_rag_chain = build_rag_chain(gemini_llm, wellness_vectorstore)
brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore)