File size: 9,029 Bytes
9dc639f
 
78bd826
 
864c041
9dc639f
 
 
 
 
 
 
726773c
e8182c5
78bd826
fc48f50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78bd826
fc48f50
78bd826
 
 
 
 
726773c
 
 
 
 
 
 
 
 
 
 
 
e8182c5
 
864c041
78bd826
e27c8c7
 
78bd826
e27c8c7
 
78bd826
 
 
 
e27c8c7
 
 
 
 
 
 
78bd826
c299b66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
864c041
78bd826
c299b66
 
 
 
 
e8182c5
c299b66
 
 
e8182c5
c299b66
 
 
 
 
 
 
 
 
864c041
78bd826
9dc639f
864c041
9dc639f
 
 
78bd826
9dc639f
 
 
 
 
 
 
 
 
 
 
 
78bd826
c299b66
 
 
 
 
 
 
 
 
 
864c041
78bd826
9dc639f
 
864c041
e27c8c7
 
 
 
 
 
 
9dc639f
 
 
 
 
864c041
e27c8c7
864c041
 
 
 
9dc639f
 
 
 
 
e27c8c7
9dc639f
 
e27c8c7
9dc639f
 
 
e27c8c7
9dc639f
 
 
 
 
 
 
 
e27c8c7
9dc639f
 
 
 
 
 
864c041
9dc639f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os
import getpass
from pydantic_ai import Agent  # Import the Agent from pydantic_ai
from pydantic_ai.models.mistral import MistralModel  # Import the Mistral model
import spacy  # Import spaCy for NER functionality
import pandas as pd
from typing import Optional
from langchain.docstore.document import Document
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from smolagents import CodeAgent, DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel
import subprocess  # Import subprocess to run shell commands
from langchain.llms.base import LLM  # Import LLM

from classification_chain import get_classification_chain
from refusal_chain import get_refusal_chain
from tailor_chain import get_tailor_chain
from cleaner_chain import get_cleaner_chain, CleanerChain


# 1) Environment: set up keys if missing
if not os.environ.get("GEMINI_API_KEY"):
    os.environ["GEMINI_API_KEY"] = getpass.getpass("Enter your Gemini API Key: ")
if not os.environ.get("GROQ_API_KEY"):
    os.environ["GROQ_API_KEY"] = getpass.getpass("Enter your GROQ API Key: ")
if not os.environ.get("MISTRAL_API_KEY"):
    os.environ["MISTRAL_API_KEY"] = getpass.getpass("Enter your Mistral API Key: ")

# Initialize Mistral client
mistral_client = Mistral(api_key=os.environ["MISTRAL_API_KEY"])
# Initialize Mistral agent using Pydantic AI

mistral_api_key = os.environ.get("MISTRAL_API_KEY")  # Ensure your Mistral API key is set
mistral_model = MistralModel("mistral-large-latest", api_key=mistral_api_key)  # Use a Mistral model
mistral_agent = Agent(mistral_model)

# Load spaCy model for NER and download the spaCy model if not already installed
def install_spacy_model():
    try:
        spacy.load("en_core_web_sm")
        print("spaCy model 'en_core_web_sm' is already installed.")
    except OSError:
        print("Downloading spaCy model 'en_core_web_sm'...")
        subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True)
        print("spaCy model 'en_core_web_sm' downloaded successfully.")

# Call the function to install the spaCy model if needed
install_spacy_model()

# Load the spaCy model globally
nlp = spacy.load("en_core_web_sm")

# Function to moderate text using Pydantic AI's Mistral moderation model
def moderate_text(query: str) -> str:
    """
    Classifies the query as harmful or not using Mistral Moderation via Pydantic AI.
    Returns "OutOfScope" if harmful, otherwise returns the original query.
    """
    response = mistral_agent.call("classify", {"inputs": [query]})
    categories = response['results'][0]['categories']

    # Check if harmful content is flagged in moderation categories
    if categories.get("violence_and_threats", False) or \
       categories.get("hate_and_discrimination", False) or \
       categories.get("dangerous_and_criminal_content", False) or \
       categories.get("selfharm", False):
        return "OutOfScope"
    return query

# 3) build_or_load_vectorstore (no changes)
def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS:
    if os.path.exists(store_dir):
        print(f"DEBUG: Found existing FAISS store at '{store_dir}'. Loading...")
        embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
        vectorstore = FAISS.load_local(store_dir, embeddings)
        return vectorstore
    else:
        print(f"DEBUG: Building new store from CSV: {csv_path}")
        df = pd.read_csv(csv_path)
        df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
        df.columns = df.columns.str.strip()
        if "Answer" in df.columns:
            df.rename(columns={"Answer": "Answers"}, inplace=True)
        if "Question" not in df.columns and "Question " in df.columns:
            df.rename(columns={"Question ": "Question"}, inplace=True)
        if "Question" not in df.columns or "Answers" not in df.columns:
            raise ValueError("CSV must have 'Question' and 'Answers' columns.")
        docs = []
        for _, row in df.iterrows():
            q = str(row["Question"])
            ans = str(row["Answers"])
            doc = Document(page_content=ans, metadata={"question": q})
            docs.append(doc)
        embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
        vectorstore = FAISS.from_documents(docs, embedding=embeddings)
        vectorstore.save_local(store_dir)
        return vectorstore

# 4) Build RAG chain for Gemini (no changes)
def build_rag_chain(llm_model: LiteLLMModel, vectorstore: FAISS) -> RetrievalQA:
    class GeminiLangChainLLM(LLM):
        def _call(self, prompt: str, stop: Optional[list] = None, **kwargs) -> str:
            messages = [{"role": "user", "content": prompt}]
            return llm_model(messages, stop_sequences=stop)

        @property
        def _llm_type(self) -> str:
            return "custom_gemini"
    
    retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
    gemini_as_llm = GeminiLangChainLLM()
    rag_chain = RetrievalQA.from_chain_type(
        llm=gemini_as_llm,
        chain_type="stuff",
        retriever=retriever,
        return_source_documents=True
    )
    return rag_chain

# 5) Initialize all the separate chains
classification_chain = get_classification_chain()
refusal_chain = get_refusal_chain()  # Refusal chain will now use dynamic topic
tailor_chain = get_tailor_chain()
cleaner_chain = get_cleaner_chain()

# 6) Build our vectorstores + RAG chains
wellness_csv = "AIChatbot.csv"
brand_csv = "BrandAI.csv"
wellness_store_dir = "faiss_wellness_store"
brand_store_dir = "faiss_brand_store"

wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir)
brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir)

gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY"))
wellness_rag_chain = build_rag_chain(gemini_llm, wellness_vectorstore)
brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore)

# 7) Tools / Agents for web search (no changes)
search_tool = DuckDuckGoSearchTool()
web_agent = CodeAgent(tools=[search_tool], model=gemini_llm)
managed_web_agent = ManagedAgent(agent=web_agent, name="web_search", description="Runs web search for you.")
manager_agent = CodeAgent(tools=[], model=gemini_llm, managed_agents=[managed_web_agent])

def do_web_search(query: str) -> str:
    print("DEBUG: Attempting web search for more info...")
    search_query = f"Give me relevant info: {query}"
    response = manager_agent.run(search_query)
    return response

# 8) Orchestrator: run_with_chain
def run_with_chain(query: str) -> str:
    print("DEBUG: Starting run_with_chain...")
    
    # 1) Moderate the query for harmful content
    moderated_query = moderate_text(query)
    if moderated_query == "OutOfScope":
        return "Sorry, this query contains harmful or inappropriate content."

    # 2) Classify the query
    class_result = classification_chain.invoke({"query": moderated_query})
    classification = class_result.get("text", "").strip()
    print("DEBUG: Classification =>", classification)

    # If OutOfScope => refusal => tailor => return
    if classification == "OutOfScope":
        # Extract the main topic for the refusal message
        topic = extract_main_topic(moderated_query)
        print("DEBUG: Extracted Topic =>", topic)
        
        # Pass the extracted topic to the refusal chain
        refusal_text = refusal_chain.run({"topic": topic})
        final_refusal = tailor_chain.run({"response": refusal_text})
        return final_refusal.strip()

    # If Wellness => wellness RAG => if insufficient => web => unify => tailor
    if classification == "Wellness":
        rag_result = wellness_rag_chain({"query": moderated_query})
        csv_answer = rag_result["result"].strip()
        if not csv_answer:
            web_answer = do_web_search(moderated_query)
        else:
            lower_ans = csv_answer.lower()
            if any(phrase in lower_ans for phrase in ["i do not know", "not sure", "no context", "cannot answer"]):
                web_answer = do_web_search(moderated_query)
            else:
                web_answer = ""
        final_merged = cleaner_chain.merge(kb=csv_answer, web=web_answer)
        final_answer = tailor_chain.run({"response": final_merged})
        return final_answer.strip()

    # If Brand => brand RAG => tailor => return
    if classification == "Brand":
        rag_result = brand_rag_chain({"query": moderated_query})
        csv_answer = rag_result["result"].strip()
        final_merged = cleaner_chain.merge(kb=csv_answer, web="")
        final_answer = tailor_chain.run({"response": final_merged})
        return final_answer.strip()

    # fallback
    refusal_text = refusal_chain.run({"topic": "this topic"})
    final_refusal = tailor_chain.run({"response": refusal_text})
    return final_refusal.strip()