import os import getpass import spacy import pandas as pd from typing import Optional import subprocess import asyncio # Needed for managing async tasks from langchain.llms.base import LLM from langchain.docstore.document import Document from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.chains import RetrievalQA from smolagents import CodeAgent, DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel from pydantic_ai import Agent # Import Pydantic AI's Agent from mistralai import Mistral from langchain.prompts import PromptTemplate # Import chains and tools from classification_chain import get_classification_chain from cleaner_chain import get_cleaner_chain from refusal_chain import get_refusal_chain from tailor_chain import get_tailor_chain from prompts import classification_prompt, refusal_prompt, tailor_prompt # Initialize Mistral API client mistral_api_key = os.environ.get("MISTRAL_API_KEY") client = Mistral(api_key=mistral_api_key) # Initialize Pydantic AI Agent (for text validation) pydantic_agent = Agent('mistral:mistral-large-latest', result_type=str) # Load spaCy model for NER and download it if not already installed def install_spacy_model(): try: spacy.load("en_core_web_sm") print("spaCy model 'en_core_web_sm' is already installed.") except OSError: print("Downloading spaCy model 'en_core_web_sm'...") subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True) print("spaCy model 'en_core_web_sm' downloaded successfully.") install_spacy_model() nlp = spacy.load("en_core_web_sm") # Function to extract the main topic from the query using spaCy NER def extract_main_topic(query: str) -> str: doc = nlp(query) main_topic = None for ent in doc.ents: if ent.label_ in ["ORG", "PRODUCT", "PERSON", "GPE", "TIME"]: main_topic = ent.text break if not main_topic: for token in doc: if token.pos_ in ["NOUN", "PROPN"]: main_topic = token.text break return main_topic if main_topic else "this topic" # Function to classify query based on wellness topics def classify_query(query: str) -> str: wellness_keywords = ["box breathing", "meditation", "yoga", "mindfulness", "breathing exercises"] if any(keyword in query.lower() for keyword in wellness_keywords): return "Wellness" # Fallback to classification chain if not directly recognized class_result = classification_chain.invoke({"query": query}) classification = class_result.get("text", "").strip() return classification if classification != "OutOfScope" else "OutOfScope" # Function to moderate text using Mistral moderation API (async version) async def moderate_text(query: str) -> str: try: # Use Pydantic AI to validate the text await pydantic_agent.run(query) # Use async run for Pydantic validation except Exception as e: print(f"Error validating text: {e}") return "Invalid text format." # Call the Mistral moderation API response = await client.classifiers.moderate_chat( model="mistral-moderation-latest", inputs=[{"role": "user", "content": query}] ) # Assuming the response is an object of type 'ClassificationResponse', # check if it has a 'results' attribute, and then access its categories if hasattr(response, 'results') and response.results: categories = response.results[0].categories # Check if harmful categories are present if categories.get("violence_and_threats", False) or \ categories.get("hate_and_discrimination", False) or \ categories.get("dangerous_and_criminal_content", False) or \ categories.get("selfharm", False): return "OutOfScope" return query # Function to build or load the vector store from CSV data def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS: if os.path.exists(store_dir): print(f"DEBUG: Found existing FAISS store at '{store_dir}'. Loading...") embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1") vectorstore = FAISS.load_local(store_dir, embeddings) return vectorstore else: print(f"DEBUG: Building new store from CSV: {csv_path}") df = pd.read_csv(csv_path) df = df.loc[:, ~df.columns.str.contains('^Unnamed')] df.columns = df.columns.str.strip() if "Answer" in df.columns: df.rename(columns={"Answer": "Answers"}, inplace=True) if "Question" not in df.columns and "Question " in df.columns: df.rename(columns={"Question ": "Question"}, inplace=True) if "Question" not in df.columns or "Answers" not in df.columns: raise ValueError("CSV must have 'Question' and 'Answers' columns.") docs = [] for _, row in df.iterrows(): q = str(row["Question"]) ans = str(row["Answers"]) doc = Document(page_content=ans, metadata={"question": q}) docs.append(doc) embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1") vectorstore = FAISS.from_documents(docs, embedding=embeddings) vectorstore.save_local(store_dir) return vectorstore # Function to build RAG chain def build_rag_chain(llm_model: LiteLLMModel, vectorstore: FAISS) -> RetrievalQA: class GeminiLangChainLLM(LLM): def _call(self, prompt: str, stop: Optional[list] = None, **kwargs) -> str: messages = [{"role": "user", "content": prompt}] return llm_model(messages, stop_sequences=stop) @property def _llm_type(self) -> str: return "custom_gemini" retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3}) gemini_as_llm = GeminiLangChainLLM() rag_chain = RetrievalQA.from_chain_type( llm=gemini_as_llm, chain_type="stuff", retriever=retriever, return_source_documents=True ) return rag_chain # Function to perform web search using DuckDuckGo async def do_web_search(query: str) -> str: search_tool = DuckDuckGoSearchTool() web_agent = CodeAgent(tools=[search_tool], model=pydantic_agent) managed_web_agent = ManagedAgent(agent=web_agent, name="web_search", description="Runs web search for you.") manager_agent = CodeAgent(tools=[], model=pydantic_agent, managed_agents=[managed_web_agent]) search_query = f"Give me relevant info: {query}" response = manager_agent.run(search_query) return response # Function to combine web and knowledge base responses async def merge_responses(kb_answer: str, web_answer: str) -> str: # Merge both answers with a cohesive response final_answer = f"Knowledge Base Answer: {kb_answer}\n\nWeb Search Result: {web_answer}" return final_answer.strip() # Orchestrate the entire workflow async def run_async_pipeline(query: str) -> str: # Moderate the query for harmful content (async) moderated_query = await moderate_text(query) if moderated_query == "OutOfScope": return "Sorry, this query contains harmful or inappropriate content." # Classify the query manually classification = classify_query(moderated_query) if classification == "OutOfScope": refusal_text = refusal_chain.run({"topic": "this topic"}) final_refusal = tailor_chain.run({"response": refusal_text}) return final_refusal.strip() if classification == "Wellness": rag_result = wellness_rag_chain({"query": moderated_query}) csv_answer = rag_result["result"].strip() web_answer = "" # Empty if we found an answer from the knowledge base if not csv_answer: web_answer = await do_web_search(moderated_query) final_merged = await merge_responses(csv_answer, web_answer) final_answer = tailor_chain.run({"response": final_merged}) return final_answer.strip() if classification == "Brand": rag_result = brand_rag_chain({"query": moderated_query}) csv_answer = rag_result["result"].strip() final_merged = await merge_responses(csv_answer, "") final_answer = tailor_chain.run({"response": final_merged}) return final_answer.strip() refusal_text = refusal_chain.run({"topic": "this topic"}) final_refusal = tailor_chain.run({"response": refusal_text}) return final_refusal.strip() # Run the pipeline with the event loop def run_with_chain(query: str) -> str: return asyncio.run(run_async_pipeline(query)) # Initialize chains here classification_chain = get_classification_chain() refusal_chain = get_refusal_chain() tailor_chain = get_tailor_chain() cleaner_chain = get_cleaner_chain() wellness_csv = "AIChatbot.csv" brand_csv = "BrandAI.csv" wellness_store_dir = "faiss_wellness_store" brand_store_dir = "faiss_brand_store" wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir) brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir) gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY")) wellness_rag_chain = build_rag_chain(gemini_llm, wellness_vectorstore) brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore)