import os import getpass import spacy import pandas as pd from typing import Optional, List, Dict, Any import subprocess from langchain.llms.base import LLM from langchain.docstore.document import Document from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.chains import RetrievalQA from smolagents import CodeAgent, DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel from pydantic import BaseModel, Field, ValidationError, validator from mistralai import Mistral from langchain.prompts import PromptTemplate # Import chains and tools from classification_chain import get_classification_chain from cleaner_chain import get_cleaner_chain from refusal_chain import get_refusal_chain from tailor_chain import get_tailor_chain from prompts import classification_prompt, refusal_prompt, tailor_prompt # Initialize Mistral API client mistral_api_key = os.environ.get("MISTRAL_API_KEY") client = Mistral(api_key=mistral_api_key) # Pydantic models for validation and type safety class QueryInput(BaseModel): query: str = Field(..., min_length=1, description="The input query string") @validator('query') def check_query_is_string(cls, v): if not isinstance(v, str): raise ValueError("Query must be a valid string") if v.strip() == "": raise ValueError("Query cannot be empty or just whitespace") return v.strip() class ClassificationResult(BaseModel): category: str = Field(..., description="The classification category") confidence: float = Field(..., ge=0.0, le=1.0, description="Classification confidence score") class ModerationResult(BaseModel): is_safe: bool = Field(..., description="Whether the content is safe") categories: Dict[str, bool] = Field(default_factory=dict, description="Detected content categories") original_text: str = Field(..., description="The original input text") class RAGResponse(BaseModel): answer: str = Field(..., description="The generated answer") sources: List[str] = Field(default_factory=list, description="Source documents used") confidence: float = Field(..., ge=0.0, le=1.0, description="Confidence score of the answer") # Load spaCy model for NER def install_spacy_model(): try: spacy.load("en_core_web_sm") print("spaCy model 'en_core_web_sm' is already installed.") except OSError: print("Downloading spaCy model 'en_core_web_sm'...") subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True) print("spaCy model 'en_core_web_sm' downloaded successfully.") install_spacy_model() nlp = spacy.load("en_core_web_sm") def extract_main_topic(query: str) -> str: try: query_input = QueryInput(query=query) doc = nlp(query_input.query) main_topic = None # Try to find named entities first for ent in doc.ents: if ent.label_ in ["ORG", "PRODUCT", "PERSON", "GPE", "TIME"]: main_topic = ent.text break # If no named entities found, look for nouns if not main_topic: for token in doc: if token.pos_ in ["NOUN", "PROPN"]: main_topic = token.text break return main_topic if main_topic else "this topic" except Exception as e: print(f"Error extracting main topic: {e}") return "this topic" def moderate_text(query: str) -> ModerationResult: try: query_input = QueryInput(query=query) response = client.classifiers.moderate_chat( model="mistral-moderation-latest", inputs=[{"role": "user", "content": query_input.query}] ) is_safe = True categories = {} if hasattr(response, 'results') and response.results: categories = { "violence": response.results[0].categories.get("violence_and_threats", False), "hate": response.results[0].categories.get("hate_and_discrimination", False), "dangerous": response.results[0].categories.get("dangerous_and_criminal_content", False), "selfharm": response.results[0].categories.get("selfharm", False) } is_safe = not any(categories.values()) return ModerationResult( is_safe=is_safe, categories=categories, original_text=query_input.query ) except ValidationError as e: raise ValueError(f"Input validation failed: {str(e)}") except Exception as e: raise RuntimeError(f"Moderation failed: {str(e)}") def classify_query(query: str) -> ClassificationResult: try: query_input = QueryInput(query=query) wellness_keywords = ["box breathing", "meditation", "yoga", "mindfulness", "breathing exercises"] if any(keyword in query_input.query.lower() for keyword in wellness_keywords): return ClassificationResult(category="Wellness", confidence=0.9) class_result = classification_chain.invoke({"query": query_input.query}) classification = class_result.get("text", "").strip() confidence_map = { "Wellness": 0.8, "Brand": 0.8, "OutOfScope": 0.6 } return ClassificationResult( category=classification if classification != "" else "OutOfScope", confidence=confidence_map.get(classification, 0.5) ) except ValidationError as e: raise ValueError(f"Classification input validation failed: {str(e)}") except Exception as e: raise RuntimeError(f"Classification failed: {str(e)}") def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS: try: if os.path.exists(store_dir): print(f"Loading existing FAISS store from '{store_dir}'") embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1") return FAISS.load_local(store_dir, embeddings) print(f"Building new FAISS store from CSV: {csv_path}") df = pd.read_csv(csv_path) df = df.loc[:, ~df.columns.str.contains('^Unnamed')] df.columns = df.columns.str.strip() # Handle column name variations if "Answer" in df.columns: df.rename(columns={"Answer": "Answers"}, inplace=True) if "Question" not in df.columns and "Question " in df.columns: df.rename(columns={"Question ": "Question"}, inplace=True) if "Question" not in df.columns or "Answers" not in df.columns: raise ValueError("CSV must have 'Question' and 'Answers' columns") docs = [ Document(page_content=str(row["Answers"]), metadata={"question": str(row["Question"])}) for _, row in df.iterrows() ] embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1") vectorstore = FAISS.from_documents(docs, embedding=embeddings) vectorstore.save_local(store_dir) return vectorstore except Exception as e: raise RuntimeError(f"Error building/loading vector store: {str(e)}") def build_rag_chain(llm_model: LiteLLMModel, vectorstore: FAISS) -> RetrievalQA: class GeminiLangChainLLM(LLM): def _call(self, prompt: str, stop: Optional[list] = None, **kwargs) -> str: messages = [{"role": "user", "content": prompt}] return llm_model(messages, stop_sequences=stop) @property def _llm_type(self) -> str: return "custom_gemini" try: retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3}) gemini_as_llm = GeminiLangChainLLM() return RetrievalQA.from_chain_type( llm=gemini_as_llm, chain_type="stuff", retriever=retriever, return_source_documents=True ) except Exception as e: raise RuntimeError(f"Error building RAG chain: {str(e)}") def do_web_search(query: str) -> str: try: query_input = QueryInput(query=query) search_tool = DuckDuckGoSearchTool() web_agent = CodeAgent(tools=[search_tool], model=pydantic_agent) managed_web_agent = ManagedAgent(agent=web_agent, name="web_search", description="Performs web searches") manager_agent = CodeAgent(tools=[], model=pydantic_agent, managed_agents=[managed_web_agent]) search_query = f"Give me relevant info: {query_input.query}" return manager_agent.run(search_query) except Exception as e: return f"Web search failed: {str(e)}" def merge_responses(kb_answer: str, web_answer: str) -> str: try: if not kb_answer and not web_answer: return "No relevant information found." if not web_answer: return kb_answer.strip() if not kb_answer: return web_answer.strip() return f"Knowledge Base Answer: {kb_answer.strip()}\n\nWeb Search Result: {web_answer.strip()}" except Exception as e: return f"Error merging responses: {str(e)}" def sanitize_message(message: Any) -> str: """Sanitize message input to ensure it's a valid string.""" if hasattr(message, 'content'): return str(message.content) if isinstance(message, (list, dict)): return str(message) return str(message) # Modify your run_pipeline function to include the sanitization def run_pipeline(query: str) -> str: try: # Sanitize input query = sanitize_message(query) # Rest of your pipeline code... moderation_result = moderate_text(query) if not moderation_result.is_safe: return "Sorry, this query contains harmful or inappropriate content." # Validate and moderate input moderation_result = moderate_text(query) if not moderation_result.is_safe: return "Sorry, this query contains harmful or inappropriate content." # Classify the query classification_result = classify_query(moderation_result.original_text) if classification_result.category == "OutOfScope": refusal_text = refusal_chain.run({"topic": "this topic"}) return tailor_chain.run({"response": refusal_text}).strip() # Handle different classifications if classification_result.category == "Wellness": rag_result = wellness_rag_chain({"query": moderation_result.original_text}) csv_answer = rag_result["result"].strip() web_answer = "" if csv_answer else do_web_search(moderation_result.original_text) final_merged = merge_responses(csv_answer, web_answer) return tailor_chain.run({"response": final_merged}).strip() if classification_result.category == "Brand": rag_result = brand_rag_chain({"query": moderation_result.original_text}) csv_answer = rag_result["result"].strip() final_merged = merge_responses(csv_answer, "") return tailor_chain.run({"response": final_merged}).strip() # Default fallback refusal_text = refusal_chain.run({"topic": "this topic"}) return tailor_chain.run({"response": refusal_text}).strip() except Exception as e: return f"An error occurred while processing your request: {str(e)}" # Initialize chains and vectorstores try: classification_chain = get_classification_chain() refusal_chain = get_refusal_chain() tailor_chain = get_tailor_chain() cleaner_chain = get_cleaner_chain() wellness_csv = "AIChatbot.csv" brand_csv = "BrandAI.csv" wellness_store_dir = "faiss_wellness_store" brand_store_dir = "faiss_brand_store" wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir) brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir) gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY")) wellness_rag_chain = build_rag_chain(gemini_llm, wellness_vectorstore) brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore) print("Pipeline initialized successfully!") except Exception as e: print(f"Error initializing pipeline: {str(e)}") def run_with_chain(query: str) -> str: return run_pipeline(query)